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Overview of presentation

!Optimization: basic definitions and concepts  

! Introduction to classes of optimization problems



! Optimization = search for the best solution 
! in mathematical terms: 

minimization or maximization of an objective function f (x) 
depending on variables x subject to constraints

What is optimization?

Equivalence of maximization and minimization problems: 
(from now on only minimization)

x*   Minimum

x

-f(x)

x*   Maximum

f(x)

x



! Often variable x shall satisfy certain constraints, e.g.:  
• x     0 
• x1 

2 + x2 
2  = C 

! General formulation:

Constrained optimization

f objective function / cost function 
g equality constraints 
h inequality constraints
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Simple example: Ball hanging on a spring  

To find position at rest, 
minimize potential energy!

spring gravity
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feasible set is intersection 
of grey and blue area

Feasible set = collection of all 
points that satisfy all constraints:

Example
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Local and global optima

f(x)

x

Global Minimum:

Local Minimum

Local Minimum



Derivatives
! First and second derivatives of the objective function or the 

constraints play an important role in optimization  

! The first order derivatives are called the gradient  (of the resp. fct) 

! and the second order derivatives are called the Hessian matrix



! sufficient condition:  
x* stationary and ∇2f(x*) positive definite

! necessary condition:  
∇f(x*)=0 (stationarity)

Optimality conditions (unconstrained)

Assume that f is twice differentiable.  
We want to test a point x* for local 
optimality.

x*

nRxxf ∈)(min



Types of stationary points

∇2f(x*) positive definite: 
local minimum

∇2f(x*) negative definite: 
local maximum

∇2f(x*) indefinite: saddle point

(a)-(c) x* is stationary: ∇f(x*)=0



contour lines of f(x)

gradient vector

unconstrained minimum: 

Ball on a spring without constraints
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Sometimes there are  many local minima

e.g. potential energy  
of macromolecule

Global optimization is a very hard issue - most algorithms find only 
the next local minimum.   But there is a favourable special case...



Convex feasible sets

Convex: all connecting lines 

between feasible points are in  

the feasible set

Non-convex: some connecting 

line between two feasible points 

is not in the feasible set
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22 CHAPTER 2. NONLINEAR OPTIMIZATION

Definition 5 (Active Constraints and Active Set) An inequality constraint hi(x)  0 is called active at x⇤ 2 ⌦
iff hi(x⇤) = 0 and otherwise inactive. The index set A(x⇤) ⇢ {1, . . . , nh} of active inequality constraint indices
is called the ”active set”.

Often, the name active set also comprises all equality constraint indices, as equalities could be considered to be
always active.

Problem (2.1) is very generic. In Section 2.1 we review some special cases, which still yield large classes of
optimization problems. In order to choose the right algorithm for a practical problem, we should know how to
classify it and which mathematical structures can be exploited. Replacing an inadequate algorithm by a suitable
one can reduce solution times by orders of magnitude. E.g., an important structure is convexity. It allows us to to
find global minima by searching for local minima only.

For the general case we review the first and second order conditions of optimality in Sections 2.2 and 2.3,
respectively.

2.1 Important Special Classes
Linear Optimization

An obvious special case occurs when the functions f , g, and h in (2.1) are linear, resulting in a linear optimization
problem (or Linear Program, LP)

minimize
x 2 Rn

c>x (2.2a)

subject to Ax� b = 0, (2.2b)
Cx� d  0. (2.2c)

Here, the problem data are c 2 Rn, A 2 Rn
g

⇥n, b 2 Rn
g , C 2 Rn

h

⇥n, and d 2 Rn
h .

It is easy to show that one optimal solution of any LP – if the LP does have a solution and is not unbounded
– has to be a vertex of the polytope of feasible points. Vertices can be represented and calculated by means of
basis solution vectors, with a basis of active inequality constraints. Thus, there are only finitely many vertices,
giving rise to Simplex algorithms that compare all possible solutions in a clever way. However, naturally also the
optimality conditions of Section 2.2 are valid and can be used for algorithms, in particular interior point methods.

Quadratic Optimization

If in the general NLP formulation (2.1) the constraints g, h are affine, and the objective is a linear-quadratic
function, we call the resulting problem a Quadratic Optimization Problem or Quadratic Program (QP). A general
QP can be formulated as follows.

minimize
x 2 Rn

c>x+
1

2
x>Bx (2.3a)

subject to Ax� b = 0, (2.3b)
Cx� d  0. (2.3c)

Here, the problem data are c 2 Rn, A 2 Rn
g

⇥n, b 2 Rn
g , C 2 Rn

h

⇥n, d 2 Rn
h , as well as the “Hessian matrix”

B 2 Rn⇥n. Its name stems from the fact that r2f(x) = B for f(x) = c>x+ 1
2x

>Bx.
The eigenvalues of B decide on convexity or non-convexity of a QP, i.e., the possibility to solve it in polynomial

time to global optimality, or not. If B<0 we speak of a convex QP, and if B�0 we speak of a strictly convex QP.
The latter class has the property that it always has unique minimizers.

Convex Optimization

Roughly speaking, a set is convex, if all connecting lines lie inside the set:

Definition 6 (Convex Set) A set ⌦ ⇢ Rn is convex if

8x, y 2 ⌦, t 2 [0, 1] : x+ t(y � x) 2 ⌦. (2.4)



Convex functions

Convex: all connecting 

lines are above graph

Non-convex: some connecting 

lines are not above graph
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A function is convex, if all secants are above the graph:

Definition 7 (Convex Function) A function f : ⌦ ! R is convex, if ⌦ is convex and if

8x, y 2 ⌦, t 2 [0, 1] : f(x+ t(y � x))  f(x) + t(f(y)� f(x)). (2.5)

Note that this definition is equivalent to saying that the Epigraph of f , i.e., the set {(x, s) 2 Rn ⇥ R|x 2 ⌦, s �
f(x)}, is a convex set.

Definition 8 (Concave Function) A function f : ⌦ ! R is called “concave” if (�f) is convex.

Note that the feasible set ⌦ of an optimization problem (2.1) is convex if the function g is affine and the
functions hi are convex, as supported by the following theorem.

Theorem 2 (Convexity of Sublevel Sets) The sublevel set {x 2 ⌦ | h(x)  0} of a convex function h : ⌦ ! R
is convex.

Definition 9 (Convex Optimization Problem) An optimization problem with convex feasible set ⌦ and convex
objective function f : ⌦ ! R is called a convex optimization problem.

Theorem 3 (Local Implies Global Optimality for Convex Problems) For a convex optimization problem, every
local minimum is also a global one.

We leave the proofs of Theorems 2 and 3 as an exercise.
There exists a whole algebra of operations that preserve convexity of functions and sets, which is excellently

explained in the text books on convex optimization [BTN01, BV04]. Here we only mention an important fact that
is related to the positive curvature of a function.

Theorem 4 (Convexity for C2 Functions) Assume that f : ⌦ ! R is twice continuously differentiable and ⌦
convex and open. Then f is convex if and only if for all x 2 ⌦ the Hessian is positive semi-definite, i.e.,

8x 2 ⌦ : r2f(x)<0. (2.6)

Again, we leave the proof as an exercise. As an example, the quadratic objective function f(x) = c>x +
1
2x

>Bx of (2.3) is convex if and only if B<0, because 8x 2 Rn : r2f(x) = B.

2.2 First Order Optimality Conditions
An important question in continuous optimization is if a feasible point x⇤ 2 ⌦ satisfies necessary first order
optimality conditions. If it does not satisfy these conditions, x⇤ cannot be a local minimizer. If it does satisfy these
conditions, it is a hot candidate for a local minimizer. If the problem is convex, these conditions are even sufficient
to guarantee that it is a global optimizer. Thus, most algorithms for nonlinear optimization search for such points.
The first order condition can only be formulated if a technical “constraint qualification” is satisfied, which in its
simplest and numerically most attractive variant comes in the following form.

Definition 10 (LICQ) The linear independence constraint qualification (LICQ) holds at x⇤ 2 ⌦ iff all vectors
rgi(x⇤) for i 2 {1, . . . , ng} and rhi(x⇤) for i 2 A(x⇤) are linearly independent.

To give further meaning to the LICQ condition, let us combine all active inequalities with all equalities in a map g̃
defined by stacking all functions on top of each other in a colum vector as follows:

g̃(x) =


g(x)

hi(x)(i 2 A(x⇤))

�
. (2.7)

LICQ is then equivalent to full row rank of the Jacobian matrix @g̃
@x (x

⇤).



Convex problems  

Convex problem if  
 

 f(x) is convex and the feasible set is convex

One can show:  
For convex problems, every local minimum is also a global minimum.  

It is sufficient to find local minima!



Characteristics of optimization problems 1

! size / dimension of problem n , 
i.e. number of free variables 

! continuous or discrete search space 

! number of minima



Characteristics of optimization problems 2

! Properties of the objective function: 
• type: linear, nonlinear, quadratic ... 
• smoothness: continuity, differentiability 

! Existence of constraints 

! Properties of constraints: 
• equalities / inequalities 
• type: „simple bounds“, linear, nonlinear,  

dynamic equations (optimal control) 
• smoothness



Overview of presentation

!Optimization: basic definitions and concepts  

! Introduction to classes of optimization problems



Problem Class 1: Linear Programming (LP)

! Linear objective,  
 linear constraints:      
 Linear Optimization Problem     

(convex) 

! Example: Logistics Problem 
• shipment of quantities a1, a2, ... am  

of a product from m locations  
• to be received at n destinations in  

quantities b1, b2, ... bn 

• shipping costs cij 

• determine amounts xij

Origin of linear  
programming 
in 2nd world war



Problem Class 2: Quadratic Programming (QP) 

! Quadratic objective and linear  
 constraints:     
 Quadratic Optimization Problem     

(convex, if Q pos. def.) 

! Example: Markovitz mean variance portfolio optimization 
• quadratic objective: portfolio variance (sum of the variances and 

covariances of individual securities) 
• linear constraints specify a lower bound for portfolio return 

! QPs are at the core of Linear Model Predictive Control (MPC) 

! QPs play an important role as subproblems in nonlinear optimization 
(and Nonlinear MPC)



Problem Class 3: Nonlinear Programming (NLP)  

! Nonlinear Optimization Problem 
(smooth, but in general nonconvex) 

! E.g. the famous nonlinear Rosenbrock   
 function        



Problem Class 4: Non-smooth optimization

! objective function or constraints are  
non-differentiable or not continuous e.g.



! Some or all variables are integer 
(e.g. linear integer problems) 

! Special case: combinatorial optimization  
problems -- feasible set is finite 

! Example: traveling salesman problem 
• determine fastest/shortest round 

trip through n locations

Problem Class 5: Integer Programming (IP)



Problem Class 6: Optimal Control

! Optimization problems  
including dynamics in form of 
differential equations   
(infinite dimensional)  

Variables (partly ∞-dim.) 

THIS COURSE‘S MAIN TOPIC!



Summary: Optimization Overview

Optimization problems can be: 

! unconstrained or constrained 
! convex or non-convex 
! linear or non-linear 
! differentiable or non-smooth 
! continuous or integer or mixed-integer 
! finite or infinite dimensional 
! …



The great watershed

"The great watershed in optimization isn't  
between linearity and nonlinearity,  
but convexity and nonconvexity”  

R. Tyrrell Rockafellar  

• For convex optimization problems we can efficiently find global minima. 
• For non-convex, but smooth problems we can efficiently find local minima.
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