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Overview of presentation

® Optimization: basic definitions and concepts

® Introduction to classes of optimization problems



What is optimization?

® Optimization = search for the best solution

® in mathematical terms:

minimization or maximization of an objective function f (x)
depending on variables x subject to constraints

Equivalence of maximization and minimization problems:
(from now on only minimization)
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Constrained optimization

® Often variable x shall satisfy certain constraints, e.g.:

e x =0
2 2 =

® General formulation:

min f(x)
subject to (s.t.)
gx) = 0
h(ix) = 0

f objective function / cost function

g equality constraints
h inequality constraints



Simple example: Ball hanging on a spring

To find position at rest,
minimize potential energy!

min x” + X + mx,
spring gravity
l+x,+x, = O

3-x,+x, = 0



Feasible set

Feasible set = collection of all

points that satisfy all constraints:

Example

feasible set is intersection
_~ of grey and blue area

N\ 7 (x) = x, 0

— h(x)= 1-x'-x7=0

The “feasible set” ()

is {x € R"|g(z) =0, h(z) = 0}.



Local and global optima

Local Minimum

Local Minimum

Global Mini

= " € () and there exists a neighborhood N of z* (e.g.
an open ball around z*) so that V2 € QNN : f(z) > f(x*).

The point 2" € R" is a “local minimizer” iff "




Derivatives

® First and second derivatives of the objective function or the

constraints play an important role in optimization

® The first order derivatives are called the gradient (of the resp. fct)

Vf(z) = (

® and the second order derivatives are called the Hessian matrix
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Optimality conditions (unconstrained)

min f(x) x&€R"

Assume that f is twice differentiable.
We want to test a point x* for local
optimality.

® necessary condition: /
V1(x*)=0 (stationarity)

® sufficient condition:
x* stationary and V2f(x*) positive definite —




Types of stationary points

(a)-(c) x* is stationary: Vf(x*)=0

(a) (b) ,r*

V2f(x*) positive definite: i V2f(x*) negative definite:

S
local minimum , “ local maximum

Minimum Maximum

Saddle

V2f(x*) indefinite: saddle point



Ball on a spring without constraints

min x; + X, + mx,
2

%, XER
¢ X
»
»
2 contour lines of f(x)

...................... A—7
gradient vector
Vf(x)=(2x,,2x, + m)
A

unconstrained minimum:

/ 0= V/(x') & (x/,x0) = (0.2



Sometimes there are many local

e.g. potential energy
of macromolecule

Global optimization is a very hard issue - most algorithms find only
the next local minimum. But there is a favourable special case...



Convex feasible sets

Convex: all connecting lines Non-convex:. some connecting
between feasible points are in  line between two feasible points

the feasible set IS not in the feasible set

A set Q0 C R"™ is convex if

Ve,y e Q,t € [0,1]: z+t(y —x) € Q.



Convex functions

~

Convex: all connecting Non-convex:. some connecting

lines are above graph lines are not above graph

(Convex Function) A function f : Q0 — R is convex, if Q) is convex and if

vr,y et e (0,1 flz+t(y —2)) < flz) +t(f(y) — f(z)).



Convex problems

Convex problem if

f(x) is convex and the feasible set is convex

One can show: o
For convex problems, every local minimum is also a global minimum.
It is sufficient to find local minima!



Characteristics of optimization problems 1

® size / dimension of problem n
I.e. number of free variables

® continuous or discrete search space

® number of minima




Characteristics of optimization problems 2

® Properties of the objective function:
« type: linear, nonlinear, quadratic ...
« smoothness: continuity, differentiability

® EXxistence of constraints

® Properties of constraints:
« equalities / inequalities

« type: ,simple bounds®, linear, nonlinear,
dynamic equations (optimal control)

e smoothness
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® Introduction to classes of optimization problems



Problem Class 1: Linear Programming (LP)

® Linear objective,
linear constraints: H}@in 'z
Linear Optimization Problem s t. Ar = b
(convex)
x>0

® Example: Logistics Problem
« shipment of quantities a,, a,, ... a,

of a product from m locations
» to be received at n destinations in j>

quantities b4, b,, ... b,
« shipping costs ¢;
- determine amounts x;



Problem Class 2: Quadratic Programming (QP)

® Quadratic objective and linear 1
. : T T
constraints: min ¢ T+ 97 Qr
Quadratic Optimization Problem st Ap = b

(convex, if Q pos. def.)

® Example: Markovitz mean variance portfolio optimization

« quadratic objective: portfolio variance (sum of the variances and
covariances of individual securities)

 linear constraints specify a lower bound for portfolio return

® QPs are at the core of Linear Model Predictive Control (MPC)

® (QPs play an important role as subproblems in nonlinear optimization
(and Nonlinear MPC)



Problem Class 3: Nonlinear Programming (NLP)

® Nonlinear Optimization Problem .
(smooth, but in general nonconvex) mniu f ()
s. t.  h(xz) =0
g(z) >0

® E.g. the famous nonlinear Rosenbrock
function

f(z) =100(zy — 22)? + (1 — z1)?




Problem Class 4: Non-smooth optimization

® objective function or constraints are
non-differentiable or not continuous e.qg.

f(z) = |z

f(z) = max fi(z), i=1,.n
cosy furz<ZI

f(“"):{ 0 fiirx>§

flx)=14 for 1<x<i+1,7=0,1,2,..




Problem Class 5: Integer Programming (IP)

® Some or all variables are integer :
. . min C T
(e.g. linear integer problems) x

S. t. Ax =0

® Special case: combinatorial optimization
problems -- feasible set is finite

® Example: traveling salesman problem

e determine fastest/shortest round
trip through n locations




Problem Class 6: Optimal Control

® Optimization problems
including dynamics in form of

differential equations
(infinite dimensional) / bt
f(t

Variables (%), u(t),p (partly co-dim.)

z(t ,p)dt

w(t) U’(t)ap)

min
7:1; uﬂp

THIS COURSE'S MAIN TOPIC!




Summary: Optimization Overview

Optimization problems can be:

unconstrained or constrained

convex or non-convex

linear or non-linear

differentiable or non-smooth
continuous or integer or mixed-integer
finite or infinite dimensional



The great watershed

"The great watershed in optimization isn't
between linearity and nonlinearity,
but convexity and nonconvexity”

R. Tyrrell Rockafellar

« For convex optimization problems we can efficiently find global minima.
* For non-convex, but smooth problems we can efficiently find local minima.
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