
TEMPO Spring School: Theory and Numerics for Nonlinear Model Predictive Control

Exercise 3: Gauss-Newton SQP

J. Andersson M. Diehl J. Rawlings M. Zanon

University of Freiburg, March 27, 2015

Gauss-Newton sequential quadratic programming (SQP)

In the exercises so far, we solved the NLPs with IPOPT. IPOPT is a popular open-source primal-
dual interior point code employing so-called filter line-search to ensure global convergence.
Other NLP solvers that can be used from CasADi include SNOPT, WORHP and KNITRO.
In the following, we will write our own simple NLP solver implementing sequential quadratic
programming (SQP).

Starting from a given initial guess for the primal and dual variables (x(0), λ
(0)
g ), SQP solves

the NLP by iteratively computing local convex quadratic approximations of the NLP at the

current iterate (x(k), λ
(k)
g ) and solving them by using a quadratic programming (QP) solver.

For an NLP of the form:

minimize
x

f(x)

subject to x ≤ x ≤ x, g ≤ g(x) ≤ g,
(1)

these quadratic approximations take the form:

minimize
∆x

1
2 ∆xᵀ∇2

xL(x(k), λ
(k)
g , λ

(k)
x ) ∆x+∇xf(x(k))ᵀ ∆x

subject to x− x(k) ≤ ∆x ≤ x− x(k),

g − g(x(k)) ≤ ∂g

∂x
(x(k)) ∆x ≤ g − g(x(k)),

(2)

where L(x, λg, λx) = f(x) + λᵀg g(x) + λᵀx x is the so-called Lagrangian function. By solving this

QP, we get the (primal) step ∆x(k) := x(k+1) − x(k) as well as the Lagrange multipliers λ
(k+1)
g

and λ
(k+1)
x .

For NLPs with a least-squares objective function f(x) = 1
2 ‖R(x)‖22, it is often a good idea to

use the so-called Gauss-Newton method, which uses the following approximation of the Hessian
of the Lagrangian:

∇2
xL
(
x(k), λ(k)

g , λ(k)
x

)
≈ ∂R

∂x

(
x(k)

)ᵀ ∂R
∂x

(
x(k)

)
.

Note that for least-squares objective functions, the gradient of the objective function is given
by ∇xf(x) = ∂R

∂x

(
x(k)

)ᵀ
R
(
x(k)

)
, independently of the Hessian approximation.

The Gauss-Newton method has two major advantages:

• The quadratic approximation will always be a convex optimization problem, for which
efficient algorithms and software exist.

• Since the approximation of ∇2
xL does not depend on the Lagrange multipliers explicitly,

we do not need to consider it at all during the iterations and we can work only with the
primal iterates x(k).

1



Tasks:

3.1 Note that the objective function of the Rosenbrock problem from Exercise 1 can be put
in a least-squares form. Identify R(x) such that f(x) = 1

2 ‖R(x)‖22 (on paper, no coding
needed).

3.2 Implement a CasADi SXFunction g : R3 → R that calculates the equality constraint
function g(x). Evaluate it numerically and confirm that you get the expected result.

3.3 Use algorithmic differentiation in CasADi to calculate the Jacobian ∂g
∂x . Evaluate it nu-

merically and confirm that you get the expected result.

3.4 Derive the Gauss-Newton QP subproblem (2) (on paper, no coding needed).

3.5 Implement a full-step Gauss-Newton method with 10 iterations to solve the Rosenbrock
problem, using x(0) := [2.5, 3.0, 0.75]ᵀ.

QP solvers that are available in CasADi include qpOASES (mainly for dense QPs),
CPLEX and OOQP. Out of these, only qpOASES is distributed with CasADi – oth-
ers must be installed separately. You can also use an NLP solver such as IPOPT to solve
the QP.

CasADi uses the following formulation of QPs:

minimize
x

1
2x

ᵀH x+ gᵀ x

subject to x ≤ x ≤ x, a ≤ Ax ≤ a,
(3)

QP solvers in CasADi are allocated for a fixed sparsity pattern of H and A:

qp = qpStruct(h=H.sparsity(),a=A.sparsity ())

solver = QpSolver("nlp.ipopt",qp) # Allocate solver (IPOPT)

#solver = QpSolver (" qpoases",qp) # Allocate solver (qpOASES)

solver.init() # Initialize the solver

and can then be “evaluated” to solve QPs as follows:

solver.setInput(H,"h")

solver.setInput(g,"g")

solver.setInput(A,"a")

solver.setInput(lbx ,"lbx")

solver.setInput(ubx ,"ubx")

solver.setInput(lba ,"lba")

solver.setInput(uba ,"uba")

solver.evaluate ()

print solver.getOutput("x")

3.6 Extra: At each SQP iteration, print the constraint violation (primal infeasibility) as well
as gradient of the Lagrangian (dual infeasibility). These are given by

nx∑
i=0

(
max(0, x

(k)
i − xi) + max(0, xi − x

(k)
i )
)

+

ng∑
i=0

(
max(0, gi(x

(k))− gi) + max(0, g
i
− gi(x(k)))

)
and

∂R

∂x

(
x(k)

)ᵀ
R
(
x(k)

)
+
∂g

∂x

(
x(k)

)ᵀ
λg + λx

respecively.

2


