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Direct multiple shooting

Consider the following optimal control problem (OCP) with two states (x0, x1) and one control
(u):

minimize
x,u

∫ T

0
x0(t)

2 + x1(t)
2 + u(t)2 dt

subject to ẋ0(t) = (1− x1(t)
2)x0(t)− x1(t) + u(t), x0(0) = 0,

ẋ1(t) = x0(t), x1(0) = 1,

−1 ≤ u(t) ≤ 1, for t ∈ [0, T ],

(1)

with T = 10.
Let us introduce a time-grid 0 = t0 < t1 < . . . < tN = T . In the direct multiple shooting

method, the continuous-time problem (1) is discretized in order to obtain a nonlinear program
(NLP). In order to perform the discretization, the control is parametrized using basis functions
with local support. The discretized state trajectory is then obtained by simulating the system
dynamics separately on each interval. The integral term of the objective function is computed
using a quadrature formula.

In the simplest setting, we use an equidistant time grid, i.e. tk+1−tk = h = T/N . We choose
a piecewise constant control parametrization, i.e. u(t) = Uk for t ∈ [tk, tk+1], k = 0, . . . , N −1
and define the states at each shooting node Xk := x(tk) for k = 0, . . . , N . We also approximate
the integral term in the objective function by a sum of the integrand evaluated at the shooting
nodes tk. This results in the NLP:

minimize
w

J(w) :=

N∑
k=0

‖Xk‖22 +

N−1∑
k=0

U2
k

subject to X0 = [0, 1]ᵀ,
Xk+1 = F (Xk, Uk, h), −1 ≤ Uk ≤ 1, k = 0, . . . , N − 1,

(2)

where w := [X0, U0, . . . , UN−1, XN ]ᵀ and F : R2 × R × R → R2, (x(0), u, h) 7→ x(h) is the
discrete-time dynamics, obtained by solving an initial-value problem over an interval of length
h. Note that we have included the initial state (X0) as a degree of freedom in (2). As explained
in the lecture, this often makes sense even if the initial-value is fixed and known, as here.

Take a moment to think about how the solution of (2) relates to the solution of (1).
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Tasks:

2.1 Implement a CasADi SXFunction f : R2 × R → R2 which takes as argument the state x
and input u and returns the ODE right-hand-side ẋ. Evaluate numerically and inspect
the result.

2.2 Discretize the continuous-time dynamics by using the following CasADi function

F = simpleRK(f, 10)

This implements the popular fixed-stepsize explicit Runge Kutta integration scheme of
order 4 (RK4) using 10 integration steps (cf. also task 2.5 below). Evaluate it numerically
and inspect the result.

2.3 Using (2), formulate the multiple single shooting NLP as an MXFunction. Use N = 20.
NLP (2) has a total of nw = 2 (N +1)+N degrees of freedom. Start by defining a variable
w ∈ Rnw :

nw = 2*(N+1) + N

w = MX.sym("w",nw)

To get the state Xk and control Uk you can use:

X = [w[3*k : 3*k+2] for k in range(N+1)]

U = [w[3*k+2] for k in range(N)]

Solve the NLP with IPOPT as in previous exercises.

Tip: The following code could be useful for formulating the NLP:

[X_next] = F([X[k], U[k], h])

g.append(X_next - X[k+1])

2.4 Add the path constraint x0(t) ≥ −0.25in the continuous-time OCP (1). In direct multiple
shooting path constraints are only enforced in a finite number of time points. In the
simplest (and most common) setting, the path constraints are only enforced at the shooting
nodes tk. Modify your script to solve this modified problem.

2.5 Extra: As mentioned above, RK4 is a popular integrator scheme for optimal control (of
non-stiff systems). For M time steps, the scheme is given by the following pseudocode:

input x, u, h

∆t = h/M
for j = 1, . . . ,M do

k1 := f(x, u)

k2 := f(x + 1
2∆t k1, u)

k3 := f(x + 1
2∆t k2, u)

k4 := f(x + ∆t k3, u)

x := x + ∆t 1
6(k1 + 2k2 + 2k3 + k4)

end for

return x

Implement this as an MXFunction in CasADi and make sure that the result agrees with
what you got with simpleRK above when you use the same number of integration steps.
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