
TEMPO Spring School: Theory and Numerics for Nonlinear Model Predictive Control

Exercise 1: Nonlinear programming

J. Andersson M. Diehl J. Gillis J. Rawlings M. Zanon

University of Freiburg, March 26, 2015

Nonlinear programming in CasADi

CasADi can be used to solve parametric NLPs of the following form:

minimize
x

f(x)

subject to
x ≤ x ≤ x,
g ≤ g(x) ≤ g,

where x ∈ Rn is the decision variable and p ∈ Rm is a fixed (and known) parameter vector.
Equality constraints are formulated by having upper and lower bound equal, i.e. g(k) = g(k) for
some k. In the following, p is absent.

In order to allocate an solver, we construct a CasADi function that takes x (and possibly a
set of known parameters p) as inputs and returns f and g. This can be done with the syntax:

x = SX.sym("x" ,3)

f = ...

g = ...

nlp = SXFunction(nlpIn(x=x),nlpOut(f=f,g=g))

This function is than used to construct an NLP solver instance as follows:

solver = NlpSolver("ipopt",nlp)

solver.setOption("option_name", option_value)

solver.init()

where we use CasADi’s interface to the open-source NLP solver IPOPT. From the symbolic
expressions, the interface will then automatically generate the information that it might need
to solve the NLP, which may be solver and option dependent. Typically, an NLP solver will need
a function that gives the Jacobian of the constraint function and a Hessian of the Lagrangian
function (L(x, λ) = f(x) + λT g(x)) with respect to x.

NLP solvers are functions in CasADi that are “evaluated” to get the solution as outlined in
Section 4.1 of the user guide, e.g.:

solver.setInput(x0 , "x0") Initial guess for x
solver.setInput(lbx , "lbx") Lower bound on x
solver.setInput(ubx , "ubx") Upper bound on x
solver.setInput(lbg , "lbg") Lower bound on g(x)
solver.setInput(ubg , "ubg") Upper bound on g(x)
solver.evaluate () Solve the NLP

f_opt = solver.getOutput("f") Get optimal cost

x_opt = solver.getOutput("x") Get optimal solution

1

You will find the input and output schemes in the CasADi API documentation on the website
or by using the question mark in Python.

NlpSolver?

Tasks:

1.1 Go to the CasADi website and locate the user guide. With a Python interpretor in front
of you, quickly skim through Chapter 3 as well as Sections 4.1, 4.2 and 4.3 in Chapter 4.

1.2 Formulate and solve the Rosenbrock problem:

minimize
x∈R3

x20 + 100x22

subject to x2 + (1− x0)2 = x1
(1)

Use x0 = 2.5, x1 = 3.0, x2 = 0.75, as a starting point. How many iterations do you need
to to converge using default options?

1.3 By default, IPOPT will use exact Hessian information. To avoid having to calculate second
order information, we can instruct IPOPT to use a limited-memory BFGS approximation
for the Hessian using the command:

solver.setOption("hessian_approximation","limited -memory")

How does this influence the number of iterations?

1.4 Extra: A function might have multiple local minima. Consider the function:

f(x) = exp(−x20 − x21) sin(4 (x0 + x1 + x0 x
2
1)) (2)

in the domain [−1, 1]× [−1, 1]. You can visualize the function using the following lines in
Python:

from numpy import *

from matplotlib import pylab as plt

Domain

[X0 ,X1] = plt.meshgrid(linspace (-1,1,100), linspace (-1,1,100))

Function

F = exp(-X0**2-X1 **2)* sin (4*(X0+X1+X0*X1 **2))

Plot the function

plt.clf()

plt.contour(X0 ,X1 ,F)

plt.colorbar ()

plt.jet()

plt.xlabel(’x0’)

plt.ylabel(’x1’)

plt.show()

Find the unconstrained minimizer of the function starting at different starting points, e.g.
[0, 0], [0.9, 0.9], [−0.9,−0.9]. What do you see? To solve unconstrained problems with
CasADi, simply leave out the second argument to nlpOut.

2

http://casadi.org

