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Overview of presentation

® Optimization: basic definitions and concepts

® Introduction to classes of optimization problems



What is optimization?

® Optimization = search for the best solution

® in mathematical terms:

minimization or maximization of an objective function f (x)
depending on variables x subject to constraints

Equivalence of maximization and minimization problems:
(from now on only minimization)
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Constrained optimization

® Often variable x shall satisfy certain constraints, e.g.:

« x =0
2 2 =

® General formulation:

min f(x)
subject to (s.t.)
glx) = 0
hix) = 0

f objective function / cost function

g equality constraints
h inequality constraints



Simple example: Ball hanging on a spring

To find position at rest,
minimize potential energy!

min x; + X, + mx,
spring gravity
l+x,+x, = 0

3—-x,+x, = 0



Feasible set

Feasible set = collection of all
points that satisfy all constraints:

feasible set is intersection
_~ of grey and blue area

Example

N\ (x) = X, =0

— h(x)= 1-x"-x 20

The “feasible set” Q is {x € R"|g(xz) =0, h(z) = 0}.



Local and global optima

Local Minimum

Local Minimum

Global Mini

The point z* € R" is a “local minimizer” iff * € € and there exists a neighborhood \ of z* (e.g.
an open ball around z*) so that Yx € QNN : f(x) > f(z*).




Derivatives

® First and second derivatives of the objective function or the
constraints play an important role in optimization

® The first order derivatives are called the gradient (of the resp. fct)
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® and the second order derivatives are called the Hessian matrix
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Optimality conditions (unconstrained)

min f(x) xER"

Assume that f is twice differentiable.
We want to test a point x* for local
optimality.

® necessary condition: /
V1(x*)=0 (stationarity)

>V
%k
® sufficient condition: __— i
x* stationary and V2f(x*) positive definite |




Types of stationary points

(a)-(c) x* is stationary: Vf(x*)=0

(o)

V2f(x*) positive definite:
local minimum

V2f(x*) negative definite:
local maximum

V2f(x*) indefinite: saddle point



Ball on a spring without constraints

. 2 2
min x; + x, +mx,
%, XER

.. contour lines of f(x)

7 gradient vector
VI (x)=2x,,2x, + m)

unconstrained minimum:;

/ 0=V/(x') & (x.2)) = (0-2)



Sometimes there are many local minima

e.g. potential energy _ N e
of macromolecule > \ ABERNRN - N IR

Global optimization is a very hard issue - most algorithms find only
the next local minimum. But there is a favourable special case...



Convex functions

~

Convex: all connecting Non-convex: some connecting

lines are above graph lines are not above graph



Convex feasible sets

Convex: all connecting lines Non-convex: some connecting
between feasible points are in  line between two feasible points

the feasible set is not in the feasible set



Convex problems

Convex problem if

f(x) is convex and the feasible set is convex

One can show: o
For convex problems, every local minimum is also a global minimum.
It is sufficient to find local minima!



Characteristics of optimization problems 1

® size / dimension of problem n,
i.e. number of free variables

® continuous or discrete search space

® number of minima




Characteristics of optimization problems 2

® Properties of the objective function:
» type: linear, nonlinear, quadratic ...

« smoothness: continuity, differentiability Nl R
i~
i
: : : W
® Existence of constraints e

® Properties of constraints:
» equalities / inequalities

» type: ,simple bounds®, linear, nonlinear,
dynamic equations (optimal control)

e smoothness
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Problem Class 1: Linear Programming (LP)

® Linear objective,
. . . T
linear constraints: min c'x
Linear Optimization Problem s t. Az = b
(convex)
x>0

® Example: Logistics Problem

« shipment of quantities a,, a,, ... a
of a product from m locations

 to be received at n detinations in j

m

quantities by, b,, ... b,
« shipping costs c;
« determine amounts x;



Problem Class 2: Quadratic Programming (QP)

® Quadratic objective and linear - 1.
constraints: ng:n 'z + 5:1:1 Qz
Quadratic Optimization Problem 3 t. Az = b

(convex, if Q pos. def.)

® Example: Markovitz mean variance portfolio optimization

« quadratic objective: portfolio variance (sum of the variances and
covariances of individual securities)

 linear constraints specify a lower bound for portfolio return

® QPs play an important role as subproblems in nonlinear optimization



Problem Class 3: Nonlinear Programming (NLP)

® Nonlinear Optimization Problem . )
(in general nonconvex) min  f(z)

s. . h(z)=0

g(z) >0

® E.g. the famous nonlinear Rosenbrock
function

f(T) — 100(.’1)2 — ;1:%)2 4 (1 - ml)z




Problem Class 4: Non-smooth optimization

® objective function or constraints are
non-differentiable or not continuous e.g.

f(z) = max f;(z), i=1,..n

[

cosz furz <
flz) = .
0 firz>
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fleg) =1 for 1<z<i+1,1=0,1,2,..




Problem Class 5: Integer Programming (IP)

® Some or all variables are integer min T
(e.g. linear integer problems) z -

s. t. Az =2b

n

L€ 4

® Special case: combinatorial optimization &
problems -- feasible set is finite

® Example: traveling salesman problem =

e determine fastest/shortest round
trip through n locations




Problem Class 6: Optimal Control

® Optimization problems
including dynamics in form of
differential equations
(infinite dimensional) / b(t, 2

Variables  Z(t),u(t),p (partly co-dim.)
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THIS COURSE'S MAIN TOPIC!




Summary: Optimization Overview

Optimization problems can be:

unconstrained or constrained

convex or non-convex

linear or non-linear

differentiable or non-smooth
continuous or integer or mixed-integer
finite or infinite dimensional



The great watershed

"The great watershed in optimization isn't
between linearity and nonlinearity,
but convexity and nonconvexity”

R. Tyrrell Rockafellar

« For convex optimization problems we can efficiently find global minima.
« For non-convex, but smooth problems we can efficiently find local minima.
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