
Numerical Simulation with One-Step Integration
Methods

Moritz Diehl and Rien Quirynen

Overview

I Problem Statement

I Explicit Euler

I Explicit Runge-Kutta Methods

I Stiff Problems

I Implicit Euler

I Implicit Runge-Kutta Methods

I Collocation Discretization

Problem Statement

I Initial Value Problem (IVP): Regard uncontrolled ODE

ẋ = f (t, x)

with initial value x(0) = x0.

I Aim is to find x(t) on a time horizon of interest, for all
t ∈ [0,T].

I Numerical simulation codes are often called “integrators”

Time Grid and Notation

I Nearly all integration methods divide the time horizon into N
intervals. This is called “the time grid”.

I For simplicity, we assume all intervals to be of equal length
h := T/N, with time points tn = nh for n = 0, . . . ,N.

I The states x(tn) on the grid points will be approximated by
values xn ≈ x(tn).

I For convenience, we sometimes use the following shorthand

fn := f (tn, xn)

I Many integration methods exist, among them the “one-step
methods” treated in this talk.

One-Step Integration Methods

I One-step integration methods are based on a map φ that
generates the sequence x0, x1, . . . , xN , by a simple recursion,
starting at x0:

xn+1 = φ(tn, xn), for n = 0, . . . ,N − 1

I Examples for one-step integrators are “explicit Euler”,
“explicit Runge-Kutta”, “implicit Euler”, “implicit Runge
Kutta” (and, as special case of the latter, “Collocation”).

I All examples above are special cases of Runge-Kutta methods,
which are the focus of this talk.

I A main dividing line in the field of integration methods is
between “explicit” and “implicit” methods, and also the
Runge-Kutta methods can be divided along these lines.

Overview of Integration Methods

Classes of numerical methods:

General Linear Methods

Multistep One-step

Linear Multistep Runge-Kutta

explicit implicit implicitexplicit

and others ...

Runge-Kutta

Overview of Integration Methods

Classes of numerical methods:

General Linear Methods

Multistep One-step

Linear Multistep Runge-Kutta

explicit implicit implicitexplicit

and others ...

Runge-Kutta

A simple example for testing integrators

I As an example, we can apply our integrators to the simple
scalar ODE

ẋ = λx

with some scalar λ ∈ R (or, more general, in C), and with
initial value x0 ∈ R.

I The correct analytic solution is clearly given by

x(t) = x0e
λt

I In particular, the last state is given by

x(T) = x0e
λT

Convergence and Order

I In the following, we can compare the true solution with the
approximate one obtained by the integrators

I We in particular regard the “global error”
e := maxn=0,...,N ‖xn − x(tn)‖

I An integrator is called “convergent” if, for N →∞, its
approximation converges to the true solution, i.e. e → 0

I The speed of convergence, in terms of the step size h, is
called the “order of convergence”: we say the integrator is
convergent of order p if e = O(hp).

The Explicit Euler Integrator

I The simplest integrator is the explicit Euler, iterating like

xn+1 = xn + hfn

I The Euler integrator is a special case of an “explicit
Runge-Kutta (ERK)” method

Explicit Euler integrator applied to simple example

I Applied to ẋ = λx , the explicit Euler integrator gives the
recursion

xn+1 = xn + hλxn = (1 + hλ)xn

which has the analytic solution

xn = x0(1 + hλ)n

I For the last state, n = N, using h = T
N , this gives

xN = x0

(
1 +

λT

N

)N

I For N →∞, this converges to the true solution
x(T) = x0e

λT .

I One can show that the order of convergence is p = 1.

Explicit Runge-Kutta (ERK) methods

As said, explicit Euler is the simplest ERK method, and it is of
order one.

xn = xn−1 + h fn−1

BUT: it is typically not a practical method... Why?

Higher order methods need much fewer steps for same accuracy!

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

Explicit Euler

Number of steps

G
lo

b
a

l
e

rr
o

r

Explicit Runge-Kutta (ERK) methods

As said, explicit Euler is the simplest ERK method, and it is of
order one.

xn = xn−1 + h fn−1

BUT: it is typically not a practical method... Why?
Higher order methods need much fewer steps for same accuracy!

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

Explicit Euler

Number of steps

G
lo

b
a

l
e

rr
o

r

Explicit Runge-Kutta (ERK) methods
The most popular ERK method is the following 4th order method

k1 = f (tn−1, xn−1)

k2 = f (tn−1 +
h

2
, xn−1 +

h

2
k1)

k3 = f (tn−1 +
h

2
, xn−1 +

h

2
k2)

k4 = f (tn−1 + h, xn−1 + h k3)

xn = xn−1 +
h

6
(k1 + 2k2 + 2k3 + k4)

10
0

10
1

10
2

10
3

10
4

10
−20

10
−15

10
−10

10
−5

10
0

Explicit Euler vs Runge−Kutta 4

Number of steps

G
lo

b
a

l
e

rr
o

r

Euler

RK4

Explicit Runge-Kutta (ERK) methods
The most popular ERK method is the following 4th order method

k1 = f (tn−1, xn−1)

k2 = f (tn−1 +
h

2
, xn−1 +

h

2
k1)

k3 = f (tn−1 +
h

2
, xn−1 +

h

2
k2)

k4 = f (tn−1 + h, xn−1 + h k3)

xn = xn−1 +
h

6
(k1 + 2k2 + 2k3 + k4)

10
0

10
1

10
2

10
3

10
4

10
−20

10
−15

10
−10

10
−5

10
0

Explicit Euler vs Runge−Kutta 4

Number of steps

G
lo

b
a

l
e

rr
o

r

Euler

RK4

Explicit Runge-Kutta (ERK) methods

A general s-stage ERK method

k1 = f (tn−1, xn−1)

k2 = f (tn−1 + c2 h, xn−1 + a21 h k1)

k3 = f (tn−1 + c3 h, xn−1 + a31 h k1 + a32 h k2)

...

ks = f (tn−1 + cs h, xn−1 + as1 h k1 + as2 h k2 + . . .+ as,s−1 h ks−1)

xn = xn−1 + h
s∑

i=1

bi ki

NOTE: each Runge-Kutta method is defined by its so called
“Butcher table”, which contains all coefficients aij , bj , ci

Overview

I Problem Statement

I Explicit Euler

I Explicit Runge-Kutta Methods

I Stiff Problems

I Implicit Euler

I Implicit Runge-Kutta Methods

I Collocation Discretization

Stiffness

Let us consider the following simple one-dimensional system

ẋ(t) = −50(x(t)− cos(t))

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

t

x

Stepsize h = 0.018

 explicit euler

implicit euler

exact

Stiffness

Let us consider the following simple one-dimensional system

ẋ(t) = −50(x(t)− cos(t))

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

t

x

Stepsize h = 0.038

 explicit euler

implicit euler

exact

Stiffness

Let us consider the following simple one-dimensional system

ẋ(t) = −50(x(t)− cos(t))

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

t

x

Stepsize h = 0.04

 explicit euler

implicit euler

exact

Stiffness lets all known explicit integrators fail

I A stiff ODE is an ODE where some eigenvalues of the
Jacobian ∂f

∂x are very negative so that some components of
the solution decay much faster than the time scale we are
interested in

I Explicit methods need excessively many time steps to
converge.

I We can illustrate this with the explicit Euler integrator applied
to ẋ = λx with λ� 0, i.e. for a very stable system. The
explicit Euler gives

xn = x0(1 + hλ)n,

which only converges if |1 + hλ| < 1, i.e. if h < 2
(−λ) .

I For large −λ, we need to choose h extremely small.

The Implicit Euler Integrator
I The simplest implicit integrator is the implicit Euler, iterating

like
xn+1 = xn + hfn+1

or, in, written in more detail:

xn+1 = xn + hf (tn+1, xn+1)

I In each step, a nonlinear equation system needs to be solved,
namely the root-finding problem

F (xn+1) = 0

with F (xn+1) = xn+1 − xn − hf (tn+1, xn+1).
I It can be solved e.g. by Newton’s method. This needs

initialization, matrix factorizations, etc., so each step is more
expensive than for explicit methods

I Nevertheless, for stiff problems, implicit methods are cheaper
than explicit ones for the usually desired levels of accuracy

I The Euler integrator is a special case of an “implicit
Runge-Kutta (IRK)” method

Implicit Euler integrator applied to simple example

I Applied to ẋ = λx , the implicit Euler integrator gives the
recursion

xn+1 = xn + hλxn+1

which is equivalent to (1− hλ)xn+1 = xn.

I This has the analytic solution

xn = x0
1

(1− hλ)n

I for any negative λ� 0 and any timestep h > 0, due to
|1− hλh| > 1, this formula converges.

I thus, for stiff problems, the implicit Euler does not need
excessively many time steps just to ensure convergence

I One can show that the order of convergence is p = 1 (like for
the explicit Euler).

Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

k1 = f

(
tn−1 + c1 h, xn−1 + h

s∑
j=1

a1j kj

)
...

ks = f

(
tn−1 + cs h, xn−1 + h

s∑
j=1

asj kj

)

xn = xn−1 + h
s∑

i=1

bi ki

pro: nice properties (high order, stability)

con: large nonlinear system in variables k1, . . . , ks

Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

k1 = f

(
tn−1 + c1 h, xn−1 + h

s∑
j=1

a1j kj

)
...

ks = f

(
tn−1 + cs h, xn−1 + h

s∑
j=1

asj kj

)

xn = xn−1 + h
s∑

i=1

bi ki

pro: nice properties (high order, stability)

con: large nonlinear system in variables k1, . . . , ks

Collocation methods
Important family of IRK methods:

I distinct ci ’s (nonconfluent)
I on interval t ∈ [tn−1, tn], approximate x(t) by a polynomial

q(t) of degree s

I Require that the polynomial starts at xn−1 and that it satisfies
the “collocation conditions” at the s “collocation nodes”
tn−1 + cjh, as follows:

q(tn−1) = xn−1

q̇(tn−1 + c1h) = f (tn−1 + c1h, q(tn−1 + c1h))

...

q̇(tn−1 + csh) = f (tn−1 + csh, q(tn−1 + csh))

continuous approximation
⇒ xn = q(tn−1 + h)

NOTE: collocation is very popular in direct optimal control

Visualization of Collocation conditions

Collocation methods

How to implement a collocation method?

q(tn−1) = xn−1

q̇(tn−1 + c1h) = f (tn−1 + c1h, q(tn−1 + c1h))

...

q̇(tn−1 + csh) = f (tn−1 + csh, q(tn−1 + csh))

Collocation methods
How to implement a collocation method?

q(tn−1) = xn−1

q̇(tn−1 + c1h) = f (tn−1 + c1h, q(tn−1 + c1h))

...

q̇(tn−1 + csh) = f (tn−1 + csh, q(tn−1 + csh))

This is nothing else than . . .

k1 = f (tn−1 + c1 h, xn−1 + h
s∑

j=1

a1j kj)

...

ks = f (tn−1 + cs h, xn−1 + h
s∑

j=1

asj kj)

xn = xn−1 + h
s∑

i=1

bi ki

where the Butcher table is defined by the collocation nodes ci .

Conclusions

I Explicit Runge-Kutta of order 4 (RK4) is an easy and efficient
integrator for non-stiff problems

I For stiff problems, one should use implicit integrators, for
example collocation methods (a special case of implicit
Runge-Kutta)

I Other integrators for stiff systems exist, in particular the BDF
methods, a special case of linear multistep methods

