Numerical Simulation with One-Step Integration
Methods

Moritz Diehl and Rien Quirynen

Overview

» Problem Statement

» Explicit Euler

» Explicit Runge-Kutta Methods
» Stiff Problems

> Implicit Euler

» Implicit Runge-Kutta Methods

» Collocation Discretization

Problem Statement

» Initial Value Problem (IVP): Regard uncontrolled ODE
x = f(t,x)
with initial value x(0) = xo.

» Aim is to find x(t) on a time horizon of interest, for all
tel0, T]

» Numerical simulation codes are often called “integrators”

Time Grid and Notation

» Nearly all integration methods divide the time horizon into N
intervals. This is called “the time grid”.

» For simplicity, we assume all intervals to be of equal length
h:= T/N, with time points t, = nh for n=20,...,N.

» The states x(t,) on the grid points will be approximated by
values x, = x(t,).

» For convenience, we sometimes use the following shorthand
fn = f(tn, Xn)

> Many integration methods exist, among them the “one-step
methods” treated in this talk.

One-Step Integration Methods

» One-step integration methods are based on a map ¢ that
generates the sequence xg, x1, ..., Xy, by a simple recursion,
starting at xp:

Xp+1 = O(tn, Xn), for n=0,...,N—1

» Examples for one-step integrators are “explicit Euler”,
“explicit Runge-Kutta”, “implicit Euler”, “implicit Runge
Kutta” (and, as special case of the latter, “Collocation™).

» All examples above are special cases of Runge-Kutta methods,
which are the focus of this talk.

» A main dividing line in the field of integration methods is
between “explicit” and “implicit” methods, and also the
Runge-Kutta methods can be divided along these lines.

Overview of Integration Methods

Classes of numerical methods:

General Linear Methods

/\ and others ...

Multistep One-step
Linear Multistep Runge-Kutta
‘____L_/___‘___\S____ ‘____»_’___)___‘g____
| |
| explicit 1 implicit | explicit : implicit
| |
0 o - - - = 0

Overview of Integration Methods

Classes of numerical methods:

General Linear Methods

/\ and others ...

Multistep One-step
Linear Multistep Runge-Kutta
‘____L_/___‘___\S____ ‘____»_’___)___‘g____
| |
| explicit 1 implicit | explicit : implicit
| |
0 o - - - = 0

A simple example for testing integrators

» As an example, we can apply our integrators to the simple
scalar ODE
X = Ax

with some scalar A € R (or, more general, in C), and with
initial value xg € R.

» The correct analytic solution is clearly given by
x(t) = xpe

» In particular, the last state is given by

x(T) = xpeT

Convergence and Order

> In the following, we can compare the true solution with the
approximate one obtained by the integrators

» We in particular regard the “global error”
e 1= maxy=g,. N ||[xn — x(ta)]|

» An integrator is called “convergent” if, for N — oo, its
approximation converges to the true solution, i.e. e — 0

» The speed of convergence, in terms of the step size h, is
called the “order of convergence”: we say the integrator is
convergent of order p if e = O(hP).

The Explicit Euler Integrator

» The simplest integrator is the explicit Euler, iterating like
Xp41 = Xn + hf,

» The Euler integrator is a special case of an “explicit
Runge-Kutta (ERK)" method

Explicit Euler integrator applied to simple example

» Applied to x = Ax, the explicit Euler integrator gives the
recursion
Xpt1 = Xn + hAxp = (1 + hA)x,

which has the analytic solution
Xp = x0(1 4+ hX)"

> For the last state, n = N, using h = % this gives

» For N — o0, this converges to the true solution
x(T) = xpe.

» One can show that the order of convergence is p = 1.

Explicit Runge-Kutta (ERK) methods

As said, explicit Euler is the simplest ERK method, and it is of
order one.
Xp = Xp—1+ hfr_1

BUT: it is typically not a practical method... Why?

Explicit Runge-Kutta (ERK) methods

As said, explicit Euler is the simplest ERK method, and it is of

order one.

Xp = Xp—1+ hfr_1

BUT: it is typically not a practical method... Why?
Higher order methods need much fewer steps for same accuracy!

Explicit Euler
T

Global error
>

£

IOy

. .
10° 10
Number of steps

Explicit Runge-Kutta (ERK) methods

The most popular ERK method is the following 4t order method
ki = f(tn—1,Xn—1)

h h
ko = f(tn—1+ 57 Xn—1 + Ekl)

h h
ks = f(to—1 + 57 Xn=1 + §k2)
ks = f(th—1+ h,xa—1 + h k3)

h
Xn = Xn—1 + 3 (ki 4 2k + 2ks + ka)

Explicit Runge-Kutta (ERK) methods
The most popular ERK method is the following 4t order method

ki = f(tn—1,Xn-1)

h h
ko = f(tn—1+ 57 Xn—1 + Ekl)

h h
ks = f(to—1 + 57 Xn=1 + §k2)
ks = f(th—1+ h,xa—1 + h k3)
h
Xn = Xn—1 + 3 (ki 4 2k + 2ks + ka)

Explicit Euler vs Runge-Kutta 4
T

10° !
I c R
©----0
° O----g..
> el
6----6.lg iy
10°H el -4
s
[
5107 ’ 1
Q C
°
0] ©-Euler >
©RK4 <
107157 i
20|
10 0 ‘\ ‘2 163 104

Number of steps

Explicit Runge-Kutta (ERK) methods

A general s-stage ERK method

ky = f(tn—laxn—l)
ko = f(th—1+ 2 h, X1 + ao1 h k1)
k3 = f(th—1 + c3 h,xp—1 + a31 h ki + asz h ko)

ks = f(tn—l +cCshxp1+asthki+asshky+...+ dss—1 hks—l)

s
Xn = Xp—1 + hz b; ki
i=1

NOTE: each Runge-Kutta method is defined by its so called
“Butcher table”, which contains all coefficients aj;, b;, ¢;

Overview

» Problem Statement

» Explicit Euler

» Explicit Runge-Kutta Methods
» Stiff Problems

> Implicit Euler

» Implicit Runge-Kutta Methods

» Collocation Discretization

Stiffness

Let us consider the following simple one-dimensional system
x(t) = —=50(x(t) — cos(t))

Stepsize h = 0.018

2 T T T -e-explicit eulerf—
implicit euler
—exact
1.5 B

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Stiffness

Let us consider the following simple one-dimensional system
x(t) = —=50(x(t) — cos(t))

Stepsize h = 0.038

2 r r r -=-explicit euler|—
O implicit euler
; —exact
1.5F ; J

Stiffness

Let us consider the following simple one-dimensional system

x(t) = —50(x(t) — cos(t))

Stepsize h = 0.04
T T T -<-explicit euleri
% -<-implicit euler
‘ —exact

-3

? o

Stiffness lets all known explicit integrators fail

v

A stiff ODE is an ODE where some eigenvalues of the
Jacobian % are very negative so that some components of
the solution decay much faster than the time scale we are

interested in

Explicit methods need excessively many time steps to
converge.

We can illustrate this with the explicit Euler integrator applied
to x = Ax with A < 0, i.e. for a very stable system. The
explicit Euler gives

Xn = x0(1 4+ h\)",

which only converges if |1+ hA| < 1, i.e. if h < ﬁ

For large —\, we need to choose h extremely small.

The Implicit Euler Integrator

» The simplest implicit integrator is the implicit Euler, iterating
like
Xn+1 = Xp + hfai1

or, in, written in more detail:

Xp+1 = Xn + hf(tn+la XnJrl)

» In each step, a nonlinear equation system needs to be solved,
namely the root-finding problem

F(Xn+1) =0

with F(xp+1) = X1 — Xn — Af (tns1, Xnt1)-

> It can be solved e.g. by Newton's method. This needs
initialization, matrix factorizations, etc., so each step is more
expensive than for explicit methods

» Nevertheless, for stiff problems, implicit methods are cheaper
than explicit ones for the usually desired levels of accuracy

» The Euler integrator is a special case of an “implicit
Runge-Kutta (IRK)" method

Implicit Euler integrator applied to simple example

> Applied to x = Ax, the implicit Euler integrator gives the
recursion
Xnt1 = Xn + hAXpq1

which is equivalent to (1 — hA)xp41 = Xp.

» This has the analytic solution

1
X0 " hn

Xpn =

» for any negative A < 0 and any timestep h > 0, due to
|1 — hAh| > 1, this formula converges.

» thus, for stiff problems, the implicit Euler does not need
excessively many time steps just to ensure convergence

» One can show that the order of convergence is p = 1 (like for
the explicit Euler).

Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

ki=f (t‘n_l + h,X,,_1 + hz aij kj)

Jj=1

ks =f <tn1 + Cs ha Xp—1 + hz dsj kj)

j=t

Xn:anl‘i’hibiki

i=1

pro: nice properties (high order, stability)

Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

ki=fF (t,,_l + ca h,Xn_l -+ hz aij k_,)

Jj=1

ks =f (tnl +ehxo1+h) ay k,-)

=t

Xn :anl‘i’hibi ki

i=1

pro: nice properties (high order, stability)

con: large nonlinear system in variables kq, ..., ks

Collocation methods
Important family of IRK methods:
» distinct ¢;'s (nonconfluent)
» on interval t € [t,_1, t], approximate x(t) by a polynomial
q(t) of degree s

» Require that the polynomial starts at x,_; and that it satisfies
the “collocation conditions” at the s “collocation nodes”
tn—1 + ¢jh, as follows:
q(tn—1) = Xp—1
G(tn—1 + cih) = f(th—1 + cih, q(t,—1 + c1h))

d(tn—l + Csh) = f(tn—l + ch, q(tn—l + Csh))

continuous approximation
= X :q(tn—1+h)

NOTE: collocation is very popular in direct optimal control

Visualization of Collocation conditions

Collocation methods

How to implement a collocation method?

q(tnfl) = Xn—1
§(tn—1 + c1h) = f(tn—1 + c1h, g(tn—1 + c1h))

é/(tnfl + Csh) = f(tnfl + Csha q(tnfl + Csh))

Collocation methods
How to implement a collocation method?

q(tnfl) = Xn—1
§(tn—1 + c1h) = f(tn—1 + c1h, g(tn—1 + c1h))

C.](tnfl + Csh) = f(tnfl + Csh7 q(tnfl + Csh))
This is nothing else than ...

ki = f(tn,1 + h7 Xn—1 + hZ aij kj)

j=1

ks - f(tnfl + Cs h7Xn71 + hZ dsj kj)

=t

Xn = Xn—1 +hzs:bi ki

i=1

where the Butcher table is defined by the collocation nodes c;.

Conclusions

» Explicit Runge-Kutta of order 4 (RK4) is an easy and efficient
integrator for non-stiff problems

» For stiff problems, one should use implicit integrators, for
example collocation methods (a special case of implicit
Runge-Kutta)

» Other integrators for stiff systems exist, in particular the BDF
methods, a special case of linear multistep methods

