

Rien Quirynen

ACADO Code Generation tool

including material from B. Houska and M. Vukov

TEMPO Spring School on NMPC

University of Freiburg

– Katholieke Universiteit Leuven

- 3 Real-Time Iterations
- Application examples

Outline

- 2 Automatic Code Generation
- 3 Real-Time Iterations
- Application examples

Introduction

Nonlinear Dynamic Systems

Optimal Control

Many Fields of Application:

- Optimal Motions in Robotics
- Operation of a Chemical Plant
- Seasonal Heat Storage
- Kite Power

Problems:

- Optimize Parameters/Controls
- Uncertainties/Disturbances

www.acadotoolkit.org

Key Properties of ACADO Toolkit [Houska et al 2009]

- Open Source (LGPL)
- Automatic Control And Dynamic Optimization
- User friendly interface close to mathematical syntax

www.acadotoolkit.org

Key Properties of ACADO Toolkit [Houska et al 2009]

- Open Source (LGPL)
- Automatic Control And Dynamic Optimization
- User friendly interface close to mathematical syntax

Multiplatform support

- C++: Linux, OS X, Windows
- MATLAB

ACADO Toolkit:

- Automatic Control And Dynamic Optimization
- Open Source (LGPL) www.acadotoolkit.org

ACADO Toolkit:

- Automatic Control And Dynamic Optimization
- Open Source (LGPL) www.acadotoolkit.org

List of Developers:

Moritz Diehl Scientific advisor

Hans Joachim Ferreau Main developer

Boris Houska Main developer

Filip Logist Multi-objective optimization

Rien Ouirvnen Code generation

Dries Telen Optimal Experimental Design

Mattia Valerio Multi-objective optimal control

Milan Vukov Code generation for MPC & MHE

ACADO toolkit

Tutorial Example: Time Optimal Control of a Rocket

Mathematical Formulation:

 $\min_{s(\cdot),v(\cdot),m(\cdot),u(\cdot),T} T$

subject to

$$\begin{array}{rcl} \dot{s}(t) &=& v(t) \\ \dot{v}(t) &=& \frac{u(t)-0.2 \, v(t)^2}{m(t)} \\ \dot{m}(t) &=& -0.01 \, u(t)^2 \\ s(0) &=& 0 \quad s(T) \,=& 10 \\ v(0) &=& 0 \quad v(T) \,=& 0 \\ m(0) &=& 1 \\ \hline -0.1 &\leq& v(t) \,\leq& 1.7 \\ -1.1 &\leq& u(t) \,\leq& 1.1 \\ 5 &\leq& T \quad\leq& 15 \end{array}$$

ACADO toolkit

Tutorial Example: Time Optimal Control of a Rocket

Mathematical Formulation:

 $\begin{array}{l} \text{minimize} \\ s(\cdot), v(\cdot), m(\cdot), u(\cdot), T \end{array} T$

subject to

$\dot{s}(t)$	=	v(t)
$\dot{v}(t)$	=	$\frac{u(t)-0.2 v(t)^2}{m(t)}$
ṁ(t)	=	$-0.01 u(t)^2$
s(0) v(0) m(0)	= 0 = 0 = 1	s(T) = 10 v(T) = 0 l
$-0.1 \\ -1.1$	\leq	$v(t) \leq 1.7$ u(t) < 1.1

- 1.1	\geq	$u(\iota)$	\geq	T.T
5	\leq	Т	\leq	15

DifferentialState s,v,m	1;
Control	ι;
Parameter 1	1;
DifferentialEquation f(0.0, T)	;
OCP ocp(0.0, T);	
<pre>ocp.minimizeMayerTerm(T);</pre>	
f << dot(s) == v;	
f << dot(v) == (u-0.2*v*v)/m;	
f << dot(m) == -0.01*u*u;	
ocp.subjectTo(f)	;
ocp.subjectTo(AT_START, s == 0.0)	;
ocp.subjectTo(AT_START, v == 0.0)	;
ocp.subjectTo(AT_START, m == 1.0)	;
ocp.subjectTo(AT_END , s == 10.0)	;
ocp.subjectTo(AT_END , v == 0.0)	;

ocp.subjectTo(-0.1 <= v <= 1.7); ocp.subjectTo(-1.1 <= u <= 1.1); ocp.subjectTo(5.0 <= T <= 15.0); OptimizationAlgorithm algorithm(ocp); algorithm.solve();

ACADO toolkit

Optimization Results

• Optimal control of dynamic systems (ODE, DAE)

- Optimal control of dynamic systems (ODE, DAE)
- Multi-objective optimization (joint work with Filip Logist)

- Optimal control of dynamic systems (ODE, DAE)
- Multi-objective optimization (joint work with Filip Logist)
- State and parameter estimation/OED (joint work with Dries Telen and Filip Logist)

- Optimal control of dynamic systems (ODE, DAE)
- Multi-objective optimization (joint work with Filip Logist)
- State and parameter estimation/OED (joint work with Dries Telen and Filip Logist)
- Feedback control (NMPC) and closed loop simulation

- Optimal control of dynamic systems (ODE, DAE)
- Multi-objective optimization (joint work with Filip Logist)
- State and parameter estimation/OED (joint work with Dries Telen and Filip Logist)
- Feedback control (NMPC) and closed loop simulation
- Robust optimal control

- Optimal control of dynamic systems (ODE, DAE)
- Multi-objective optimization (joint work with Filip Logist)
- State and parameter estimation/OED (joint work with Dries Telen and Filip Logist)
- Feedback control (NMPC) and closed loop simulation
- Robust optimal control

\rightarrow "standard" ACADO Toolkit

- Optimal control of dynamic systems (ODE, DAE)
- Multi-objective optimization (joint work with Filip Logist)
- State and parameter estimation/OED (joint work with Dries Telen and Filip Logist)
- Feedback control (NMPC) and closed loop simulation
- Robust optimal control
- Real-Time MPC and Code Export

- Optimal control of dynamic systems (ODE, DAE)
- Multi-objective optimization (joint work with Filip Logist)
- State and parameter estimation/OED (joint work with Dries Telen and Filip Logist)
- Feedback control (NMPC) and closed loop simulation
- Robust optimal control
- Real-Time MPC and Code Export
 - \rightarrow "ACADO Code Generation"

Outline

- 2 Automatic Code Generation
- 3 Real-Time Iterations
- Application examples

12/39

ACADO Toolkit

Software and algorithms for ...

- Dynamic optimization
- code generation tool
- Fast NMPC and MHE
- MATLAB interface

ACADO Toolkit

Software and algorithms for ...

- Dynamic optimization
- code generation tool
- Fast NMPC and MHE
- MATLAB interface

Why code generation?

optimization:

- eliminate computations
- known dimensions and sparsity patterns
- no dynamic memory
- code reorganization, ...
- Customization: precision, language, libraries, ...

ACADO Toolkit

Software and algorithms for ...

Why code generation?

optimization:

- eliminate computations
- known dimensions and sparsity patterns
- no dynamic memory
- code reorganization, ...
- Customization: precision, language, libraries, ...

Outline

- 2 Automatic Code Generation
- 3 Real-Time Iterations
- Application examples

• parametric: initial condition

$$\min_{x(\cdot),u(\cdot)} \quad \int_0^T \|F(t, x(t), u(t)) - \bar{y}(t)\|_2^2 dt \text{ s.t. } \quad x(0) = \bar{x}_0 \quad \dot{x}(t) = f(t, x(t), u(t)) \quad 0 \geq h(x(t), u(t)) \quad 0 \geq r(x(0), x(T)) \quad \forall t \in [0, T]$$

- parametric: initial condition
- tracking MPC

$$\min_{x(\cdot),u(\cdot)} \int_{0}^{T} \|F(t,x(t),u(t)) - \bar{y}(t)\|_{2}^{2} dt$$
s.t. $x(0) = \bar{x}_{0}$
 $\dot{x}(t) = f(t,x(t),u(t))$
 $0 \ge h(x(t),u(t))$
 $0 \ge r(x(0),x(T))$
 $\forall t \in [0,T]$

- parametric: initial condition
- tracking MPC
- nonlinear model

Tracking MPC

Economic MPC

$$\min_{x(\cdot),u(\cdot)} \quad \int_{0}^{T} \|F(t,x(t),u(t)) - \bar{y}(t)\|_{2}^{2} dt$$

s.t. $x(0) = \bar{x}_{0}$
 $\dot{x}(t) = f(t,x(t),u(t))$
 $0 \geq h(x(t),u(t))$
 $0 \geq r(x(0),x(T))$
 $\forall t \in [0,T]$

$$\min_{x(\cdot),u(\cdot)} \int_0^T l(t,x(t),u(t)) dt$$
s.t. $x(0) = \bar{x}_0$
 $\dot{x}(t) = f(t,x(t),u(t))$
 $0 \ge h(x(t),u(t))$
 $0 \ge r(x(0),x(T))$
 $\forall t \in [0,T]$

T

Tracking MPC: continuous

$$\min_{x(\cdot),u(\cdot)} \quad \int_{0}^{T} \|F(t,x(t),u(t)) - \bar{y}(t)\|_{2}^{2} dt \text{ s.t. } x(0) = \bar{x}_{0} \dot{x}(t) = f(t,x(t),u(t)) 0 \geq h(x(t),u(t)) 0 \geq r(x(0),x(T)) \forall t \in [0,T]$$

Tracking MPC: continuous

ightarrow shooting discretization

$$\min_{x(\cdot),u(\cdot)} \quad \int_{0}^{T} \|F(t,x(t),u(t)) - \bar{y}(t)\|_{2}^{2} dt \quad \min_{x,t} \\ \text{s.t.} \quad x(0) = \bar{x}_{0} \qquad \qquad \text{s.t} \\ \dot{x}(t) = f(t,x(t),u(t)) \\ 0 \geq h(x(t),u(t)) \\ 0 \geq r(x(0),x(T)) \\ \forall t \in [0,T]$$

$$\min_{x,u} \qquad \sum_{i=0}^{N-1} \|F_i(x_i, u_i) - \bar{y}_i\|_2^2 + \|F_N(x_N)\|_2^2$$
s.t.
$$0 = x_0 - \bar{x}_0$$

$$0 = x_{i+1} - \Phi_i(x_i, u_i)$$

$$0 \ge h_i(x_i, u_i)$$

$$0 \ge r(x_0, x_N)$$

$$\forall i = 0, \dots, N-1$$

Task of the integrator in RTI

- $x_{k+1} = \Phi_k(x_k, u_k)$
- nonlinear equality constraint

Task of the integrator in RTI

•
$$x_{k+1} = \Phi_k(x_k, u_k)$$

• nonlinear equality constraint \downarrow

$$ullet$$
 linearization at $ar w_k=(ar x_k,ar u_k)$

$$0 = \mathbf{\Phi}_{\mathbf{k}}(\bar{\mathbf{w}}_{\mathbf{k}}) - x_{k+1} + \frac{\partial \mathbf{\Phi}_{\mathbf{k}}}{\partial \mathbf{w}}(\bar{\mathbf{w}}_{\mathbf{k}})(w_k - \bar{w}_k)$$

 integration and sensitivity generation is typically a major computational step

The 3-stage model structure

$$\begin{array}{ll} \underset{X,U}{\text{minimize}} & \sum_{i=0}^{N-1} \|F_i(x_i, u_i) - \bar{y}_i\|_2^2 + \|F_N(x_N)\|_2^2 \\ \text{subject to} & G_{eq}(\cdot) = \begin{bmatrix} x_0 - \bar{x}_0 \\ x_1 - \phi_0(x_0, u_0) \\ \vdots \end{bmatrix} = 0 \\ G_{ineq}(\cdot) = \begin{bmatrix} h_0(x_0, u_0) \\ \vdots \\ r(x_0, x_N) \end{bmatrix} \leq 0 \end{array}$$

$$\begin{split} \underset{X, U}{\text{minimize}} & \Phi_{\text{quad}}(X, U; X^{[k]}, U^{[k]}, Y^{[k]}, \lambda^{[k]}) \\ \text{subject to} & G_{\text{eq,lin}}(\cdot) = \begin{bmatrix} x_0 - \bar{x}_0 \\ x_1 - \phi_0(x_0^{[k]}u_0^{[k]}) - \begin{bmatrix} A_0^{[k]}, B_0^{[k]} \end{bmatrix} \begin{bmatrix} x_0 - x_0^{[k]} \\ u_0 - u_0^{[k]} \end{bmatrix} \end{bmatrix} = 0 \\ & \vdots \end{bmatrix} \\ G_{\text{ineq,lin}}(\cdot) = \begin{bmatrix} h_0(x_0^{[k]}u_0^{[k]}) + \begin{bmatrix} C_0^{[k]}, D_0^{[k]} \end{bmatrix} \begin{bmatrix} x_0 - x_0^{[k]} \\ u_0 - u_0^{[k]} \end{bmatrix} \\ & \vdots \\ r(\bar{x}_0, x_N^{[k]}) + C_N^{[k]}(x_N - x_N^{[k]}) \end{bmatrix} \le 0 \end{split}$$

$$\begin{split} \underset{X,U}{\text{minimize}} & \Phi_{\text{quad}}(X,U;X^{[k]},U^{[k]},Y^{[k]},\lambda^{[k]}) \\ \text{subject to} & G_{\text{eq,lin}}(\cdot) = \begin{bmatrix} x_0 - \bar{x}_0 \\ x_1 - \phi_0(x_0^{[k]}u_0^{[k]}) - \begin{bmatrix} A_0^{[k]},B_0^{[k]} \end{bmatrix} \begin{bmatrix} x_0 - x_0^{[k]} \\ u_0 - u_0^{[k]} \end{bmatrix} \end{bmatrix} = 0 \\ & \vdots \end{bmatrix} \\ G_{\text{ineq,lin}}(\cdot) = \begin{bmatrix} h_0(x_0^{[k]}u_0^{[k]}) + \begin{bmatrix} C_0^{[k]},D_0^{[k]} \end{bmatrix} \begin{bmatrix} x_0 - x_0^{[k]} \\ u_0 - u_0^{[k]} \end{bmatrix} \\ & \vdots \\ r(\bar{x}_0,x_N^{[k]}) + C_N^{[k]}(x_N - x_N^{[k]}) \end{bmatrix} \end{bmatrix} \leq 0 \end{split}$$

$$\begin{split} \underset{X,U}{\text{minimize}} & \Phi_{\text{quad}}(X, U; X^{[k]}, U^{[k]}, Y^{[k]}, \lambda^{[k]}) \\ \text{subject to} & G_{\text{eq,lin}}(\cdot) = \begin{bmatrix} x_0 - \bar{x}_0 \\ x_1 - \phi_0(x_0^{[k]}u_0^{[k]}) - \left[A_0^{[k]}, B_0^{[k]}\right] \begin{bmatrix} x_0 - x_0^{[k]} \\ u_0 - u_0^{[k]} \end{bmatrix} \end{bmatrix} = 0 \\ & \vdots \end{bmatrix} \\ G_{\text{ineq,lin}}(\cdot) = \begin{bmatrix} h_0(x_0^{[k]}u_0^{[k]}) + \left[C_0^{[k]}, D_0^{[k]}\right] \begin{bmatrix} x_0 - x_0^{[k]} \\ u_0 - u_0^{[k]} \end{bmatrix} \\ & \vdots \\ r(\bar{x}_0, x_N^{[k]}) + C_N^{[k]}(x_N - x_N^{[k]}) \end{bmatrix} \le 0 \end{split}$$

Objective quadratic subproblem

- Gauss-Newton: easy, convex, fast
- Exact Hessian: $B_k = \nabla^2_W \mathcal{L}(\cdot)$

How to solve the structured convex QP?

$$\min_{\Delta X, \Delta U} \sum_{i=0}^{N-1} \begin{bmatrix} \Delta x_i \\ \Delta u_i \end{bmatrix}^\top \begin{bmatrix} Q_i & S_i \\ S_i^\top & R_i \end{bmatrix} \begin{bmatrix} \Delta x_i \\ \Delta u_i \end{bmatrix} + \begin{bmatrix} \Delta x_i \\ \Delta u_i \end{bmatrix}^\top \begin{bmatrix} q_i \\ r_i \end{bmatrix} + x_N^\top Q_N x_N + x_N^\top q_N$$

s.t.
$$G_{\rm eq,lin}(\cdot) = \begin{bmatrix} \Delta x_0 - d_0 \\ \Delta x_1 - d_1 - [A_0, B_0] \begin{bmatrix} \Delta x_0 \\ \Delta u_0 \end{bmatrix} \end{bmatrix} = 0$$

 \vdots
 $G_{\rm ineq,lin}(\cdot) = \begin{bmatrix} c_0 + [C_0, D_0] \begin{bmatrix} \Delta x_0 \\ \Delta u_0 \end{bmatrix} \\ \vdots \\ c_N + C_N \Delta x_N \end{bmatrix} \le 0$

How to solve the structured convex QP?

$$\min_{\Delta X, \Delta U} \sum_{i=0}^{N-1} \begin{bmatrix} \Delta x_i \\ \Delta u_i \end{bmatrix}^\top \begin{bmatrix} Q_i & S_i \\ S_i^\top & R_i \end{bmatrix} \begin{bmatrix} \Delta x_i \\ \Delta u_i \end{bmatrix} + \begin{bmatrix} \Delta x_i \\ \Delta u_i \end{bmatrix}^\top \begin{bmatrix} q_i \\ r_i \end{bmatrix} + x_N^\top Q_N x_N + x_N^\top q_N$$

s.t.
$$G_{\mathrm{eq,lin}}(\cdot) = \begin{bmatrix} \Delta x_0 - d_0 \\ \Delta x_1 - d_1 - [A_0, B_0] \begin{bmatrix} \Delta x_0 \\ \Delta u_0 \end{bmatrix} \end{bmatrix} = 0$$

 \vdots
 $G_{\mathrm{ineq,lin}}(\cdot) = \begin{bmatrix} c_0 + [C_0, D_0] \begin{bmatrix} \Delta x_0 \\ \Delta u_0 \end{bmatrix} \\ \vdots \\ c_N + C_N \Delta x_N \end{bmatrix} \le 0$

structure exploiting, embedded convex solvers: *FORCES, qpDUNES, HPMPC, ...*

Real-Time Iterations

How to solve the structured convex QP?

structure exploiting, embedded convex solvers: **OR** condensing, $O(N^2)$ complexity

 $\begin{array}{ll} \underset{x_{0},u_{0},\ldots,x_{N}}{\minimize} & \frac{1}{2} \sum_{k=0}^{N-1} \begin{bmatrix} x_{k} \\ u_{k} \end{bmatrix}^{T} \begin{bmatrix} Q_{k} & S_{k} \\ S_{k}^{T} & R_{k} \end{bmatrix} \begin{bmatrix} x_{k} \\ u_{k} \end{bmatrix}^{L} + \begin{bmatrix} x_{k} \\ u_{k} \end{bmatrix}^{T} \begin{bmatrix} g_{k}^{*} \\ g_{k}^{*} \end{bmatrix}^{T} \\ & + \frac{1}{2} x_{N}^{T} Q_{e} x_{N} + x_{N}^{T} g_{e}^{*} \\ & + \frac{1}{2} x_{N}^{T} Q_{e} x_{N} + x_{N}^{T} g_{e}^{*} \\ & x_{k+1} = A_{k} x_{k} + B_{k} u_{k} + c_{k}, \text{ for } k = 0, \dots, N-1 \\ & x_{k}^{\text{lo}} \leq x_{k} \leq x_{k}^{\text{up}}, & \text{ for } k = 0, \dots, N-1 \\ & u_{k}^{\text{lo}} \leq u_{k} \leq u_{k}^{\text{up}}, & \text{ for } k = 0, \dots, N-1 \\ & b_{k}^{\text{lo}} \leq C_{k} x_{k} + D_{k} u_{k} \leq b_{k}^{\text{up}}, & \text{ for } k = 0, \dots, N-1 \\ & b_{e}^{\text{lo}} \leq C_{e} x_{N} \leq b_{e}^{\text{up}}, \end{array} \right)$

Real-Time Iterations

How to solve the structured convex QP?

structure exploiting, embedded convex solvers: **OR** condensing, $O(N^2)$ complexity

$$\begin{array}{ll} \underset{x_{0},u_{0},\ldots,x_{N}}{\text{minimize}} & \frac{1}{2}\sum_{k=0}^{N-1} \begin{bmatrix} x_{k} \\ u_{k} \end{bmatrix}^{T} \begin{bmatrix} Q_{k} & S_{k} \\ S_{k}^{T} & R_{k} \end{bmatrix} \begin{bmatrix} x_{k} \\ u_{k} \end{bmatrix}^{+} \begin{bmatrix} y_{k} \\ y_{k} \end{bmatrix}^{T} \begin{bmatrix} g_{k} \\ g_{k}^{T} \end{bmatrix}^{T} \\ & + \frac{1}{2}x_{N}^{T}Q_{e}x_{N} + x_{N}^{T}g_{e}^{X} \\ & + \frac{1}{2}x_{N}^{T}Q_{e}x_{N} + x_{N}^{T}g_{e}^{X} \\ & x_{k+1} = A_{k}x_{k} + B_{k}u_{k} + c_{k}, \text{ for } k = 0, \dots, N-1 \\ & x_{k}^{lo} \leq x_{k} \leq x_{k}^{up}, & \text{for } k = 0, \dots, N-1, \\ & b_{C}^{lo} \leq L_{k}x_{k} + D_{k}u_{k} \leq b_{k}^{up}, & \text{for } k = 0, \dots, N-1, \\ & b_{C}^{lo} \leq C_{k}x_{k} + D_{k}u_{k} \leq b_{k}^{up}, & \text{for } k = 0, \dots, N-1, \\ & b_{C}^{lo} \leq C_{e}x_{N} \leq b_{e}^{up}, \end{array}$$

 \longrightarrow solve the condensed QP with a dense linear algebra QP solver, e.g. <code>qpOASES</code>, www.qpoases.org

The RTI workflow for fast NMPC

Real-Time Iterations

Real-Time Iterations

Outline

Introduction

- 2 Automatic Code Generation
- 3 Real-Time Iterations
- Application examples

5 ACADO demo

ERC HIGHWIND project ¹

MHE and NMPC implementation on an experimental test set-up for launch/recovery of an airborne wind energy (AWE) system [Geebelen, 2013], located at KU Leuven (new carousel in Freiburg).

¹Joint work: A. Wagner, M. Vukov, M. Zanon, K. Geebelen

ERC HIGHWIND project

Problem specific info

- Nonlinear dynamics: 22 states and 3 inputs
- Nonlinear measurement functions (for camera and IMU)
- Sensors:
 - Camera measurements 12 data @ 10 Hz with delay
 - IMU measurements 6 data @ 500 Hz
 - $\bullet\,$ encoder measurements 2 data @ 10 Hz
- Sampling frequency: 10 Hz

ERC HIGHWIND project

Timing results: MHE & NMPC

		Average	Worst case
MHE	Preparation phase Estimation phase	3.76 ms 0.75 ms	3.76 ms 0.78 ms
	Overall execution time	4.51 ms	4.54 ms
MPC	Preparation phase Feedback phase	3.56 ms 0.50 ms	3.56 ms 0.61 ms
	Overall execution time	4.06 ms	4.17 ms

MHE applied on an induction motor [Frick, 2012]²

Dynamic system properties:

- 5 states, 2 controls
- 6 estimation intervals
- sampling freq.: 1.5 kHz

Execution times:

- one RTI on a 3 GHz Intel CPU: 30 μs (double precision)
- one RTI on a 1 GHz TI low power DSP: 270 μs (single precision)

²Joint work with ETH Zürich (D. Frick, A. Domahidi, S. Mariethoz, M. Morari)

Overhead crane [Debrouwere, 2014]

linear input $ ightarrow$ no	onlinear $ ightarrow$	linear output
6	2	0
	unstructured	d structured
integration method	220 μ	s 67 μs
condensing	6 µ	s бµs
QP solution (qpOASES) 16 µ	s 16 µs
remaining operations	3 µ	s 3µs
one real-time iteration	245 µ	s 92 µs

Table : T = 1.0 s, N = 10 and 4th order Gauss method (h = 0.025 s)

³Intel i7-3720QM 6MB cache, 2.60 GHz

linear input $ o$ nor	linear $ ightarrow$ linear	near output
6	2	0
	unstructured	structured
integration method	220 μs	67 μs
condensing	6 µs	б µs
QP solution (qpOASES)	16 µs	16 µs
remaining operations	3 µs	3 µs
one real-time iteration	245 µs	92 µs

Table : T = 1.0 s, N = 10 and 4th order Gauss method (h = 0.025 s)

 \Rightarrow integration speedup factor ~ 3

³Intel i7-3720QM 6MB cache, 2.60 GHz

Outline

1 Introduction

- 2 Automatic Code Generation
- 3 Real-Time Iterations
- Application examples

Let's control the Van der Pol oscillator

Van der Pol oscillator x,x' phase diagram for epsilon= $\alpha = 1$

$$dot(x_1) = (1 - x_2^2)x_1 - x_2 + u$$
$$dot(x_2) = x_1$$

Thank you for your attention!

Questions?