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Dynamic Technical Processes

SMB process Distillation column (Stuttgart)

(Dortmund)

Power Plant (Pavia) Polymer Reactor

(BASF)

I Idea: use model to
optimally operate plants
e.g. with respect to

I productivity,
I product purity,
I energy consumption,
I safety, ...

I Problem: offline optimal
control cannot cope with
model-plant mismatch
and disturbances

I Need closed loop
controls!



Nonlinear Model Predictive Control (NMPC)

I Each sampling time, solve for given system state x0 an
Optimal Control Problem:
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I Give first control move u0 back to real-world system. Move
horizon.

I Result: Feedback law u0(x0). Can compensate for
disturbances and modelling errors.



Example: Distillation Column (ISR, Stuttgart)

I Aim: to ensure product purity,
keep two temperatures (T14, T28)
constant despite disturbances

I least squares objective:

min

∫ t0+Tp

t0

∥∥∥∥ T14(t)− T ref
14

T28(t)− T ref
28

∥∥∥∥2

2

dt

I control horizon 10 min

I prediction horizon 10 h

I stiff DAE model with 82 differential
and 122 algebraic state variables

I Desired sampling time: 30 seconds.



NMPC Optimal Control Problem

terminal
constraint r(x(T )) ≥ 0

6
path constraints h(x, u) ≥ 0

initial value
x0 r states x(t)

controls u(t)
-p

0 t
p
T

minimize
x(·), u(·)

∫ T

0
L(x(t), u(t)) dt + E (x(T ))

subject to x(0)− x0 = 0, (fixed initial value)
ẋ(t)−f (x(t), z(t), u(t)) = 0, t ∈ [0,T ], (DAE model)

g(x(t), z(t), u(t)) = 0, t ∈ [0,T ],
h(x(t), z(t), u(t)) ≥ 0, t ∈ [0,T ], (path constraints)

r (x(T )) ≥ 0 (terminal constr.).



Online Optimization Algorithm

Basis:

I Direct Multiple Shooting for DAE

Online Features:

I Initialization of subsequent problems by Initial Value
Embedding.

I Real-Time Iterations optimize while problem is changing.

I Proof of nominal stability of combined System-Optimizer
Dynamics.



NLP in Direct Multiple Shooting
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minimize
s,q

N−1∑
i=0

li (si , qi ) + E (sN)

subject to

s0 − x0 = 0, (initial value)

si+1 − xi (ti+1; si , qi ) = 0, i = 0, . . . ,N − 1, (continuity)

h(si , qi ) ≥ 0, i = 0, . . . ,N, (discretized path constr.)

r (sN) ≥ 0. (terminal constraints)



Distillation Online Scenario

I System is in steady state, optimizer predicts constant
trajectory:

I Suddenly, system state x0 is disturbed.

I What to do with optimizer?



Conventional Approach

I use offline method, e.g. MUSCOD-II with BFGS (Leineweber, 1999).

I initialize with new initial value x0 and integrate system with
old controls.

I iterate until convergence.

Initialization

16th Iteration Solution (32nd Iteration)

Solution only after 600 seconds - much too late!
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Conventional, but with Gauss-Newton Hessian

I use Gauss-Newton method for least-squares integrals (Diehl, 2001)

Initialization

First Iteration Solution (6th Iteration)

Solution still takes two minutes - can’t we do better?
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New Approach: Initial Value Embedding

I Initialize with old trajectory, accept violation of s0 − x0 = 0
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First iteration nearly solution! Is this always so?



New Approach: Initial Value Embedding

I Initialize with old trajectory, accept violation of s0 − x0 = 0

Initialization First Iteration

Solution (3rd Iteration)

First iteration nearly solution! Is this always so?



New Approach: Initial Value Embedding

I Initialize with old trajectory, accept violation of s0 − x0 = 0

Initialization First Iteration Solution (3rd Iteration)

First iteration nearly solution! Is this always so?



New Approach: Initial Value Embedding

I Initialize with old trajectory, accept violation of s0 − x0 = 0

Initialization First Iteration Solution (3rd Iteration)

First iteration nearly solution! Is this always so?



Test with NMPC Example Problem

minimize
x(·), u(·)

∫ 3

0
x(t)2+u(t)2 dt s.t.


x(0) = x0,
ẋ = (1 + x)x+u, t ∈ [0, 3],
|x | ≤ 1, |u| ≤ 1, t ∈ [0, 3],
x(3) = 0.

I Before, system was in state x0 = 0.05

I Optimizer had found solution for x0 = 0.05

I After disturbance, new state is x0 = 0.40� 0.05

I How to compute new solution?



Transition from x0 = 0.05 to x0 = 0.4

Conventional Initialization (old controls, new initial value):

Initial Value Embedding (old solution, violates s0 − x0 = 0):



First Iteration

Conventional:

Initial Value Embedding:



2nd Iteration

Conventional:

Initial Value Embedding (already solution):



Initial Value Embedding
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I first iteration is tangential
predictor for exact solution (for
exact Hessian SQP)

I also valid for active set changes

I derivative can be computed
before x0 is known: first
iteration nearly without delay

Why wait until convergence and do nothing in the meantime?
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Real-Time Iterations

Iterate, while problem is changing!
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I tangential prediction
after each change in x0

I solution accuracy is
increased with each
iteration when x0

changes little

I iterates stay close to
solution manifold



Real-Time Iteration Algorithm:

1. Preparation Step (long):
Linearize system at current iterate, perform partial
reduction and condensing of quadratic program.

2. Feedback Step (short):
When new x0 is known, solve condensed QP and
implement control u0 immediately. Complete SQP
iteration. Go to 1.

I minimal cycle-duration (as one SQP iteration)

I negligible feedback delay (≈ 1 % of cycle)

I nevertheless fully nonlinear optimization



Real-time iterations minimize feedback delay

- time

preparation

feedback

t

tk−1

preparation

feedback

tx0(tk)

u0 (x0(tk))

tk

t

tk+1

t

For distillation model:

I preparation time: ≈ 20.0 seconds

I feedback delay: ≈ 0.2 seconds (≈1%)



Real-Time Iterations with NMPC Example

I go through initial values x0 = 0.40, 0.35, . . . 0.05,

I then jump to −0.50,−0.55, . . . ,−0.70

I Start with exact solution of x0 = 0.40:



1st Real-Time Iteration, x0 = 0.35

Real-time iterations:

Exact solution for comparison:



2nd Real-Time Iteration, x0 = 0.30
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4th Real-Time Iteration, x0 = 0.20

Real-time iterations:

Exact solution for comparison:



5th Real-Time Iteration, x0 = 0.15
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6th Real-Time Iteration, x0 = 0.10
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7th Real-Time Iteration, x0 = 0.05
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8th Real-Time Iteration, x0 = −0.50
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Next Real-Time Iteration, x0 = −0.55
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Next Real-Time Iteration, x0 = −0.60
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Next Real-Time Iteration, x0 = −0.65

Real-time iterations:
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Next Real-Time Iteration, x0 = −0.70

Real-time iterations:

Exact solution for comparison:



Nominal Stability of Closed Loop?

I Real process and optimizer are coupled with each other. Can
numerical errors grow and destabilize closed loop?

I Stability analysis combines concepts from both, NMPC
stability theory and convergence theory of nonlinear
optimization.

I Nominal stability shown under realistic assumptions.
[Diehl, Findeisen, Bock, Schlöder, Allgöwer: Nominal stability of the real-time iteration scheme for

nonlinear model predictive control. IEE Control Theory Appl. (2005) ]

I After disturbance of size ε: loss of optimality is of order O(ε2)
for Gauss-Newton, and O(ε4) for exact Hessian.
[Diehl, Bock, Schlöder: A Real-Time Iteration Scheme for Nonlinear Optimization in Optimal Feedback

Control. SIAM J. Control & Opt. (2005) ]



Realization at Distillation Column

(with Allgöwer, Findeisen, Nagy, Schwarzkopf, Uslu)

I Parameter estimation using dynamic
experiments

I Online state estimation with Extended
Kalman Filter variant, using only 3
temperature measurements to infer all 82
system states

I Implementation of estimator and
optimizer on Linux Workstation.

I Communication with Process Control
System via FTP all 10 seconds.

I Self-synchronizing processes.



Large Disturbance (Heating), then NMPC
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I Overheating by manual control

I NMPC only starts at t = 1500 s

I PI-controller not
implementable, as disturbance
too large (valve saturation)

I NMPC: at start control bound
active
⇒ T28 rises further

I Disturbance attenuated after
half an hour



Comparison with Theoretical Optimal Solution
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Simulated Control of a Looping Kite

Kite can be controlled by two lines:
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Control aim is to fly a “lying eight”:
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Period duration: 8 seconds



Orbit is Open Loop Unstable
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Simulated open loop controlled kite crashes onto ground after 25 seconds!
⇒ feedback necessary



Nonlinear Model Predictive Control Setup
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I predict two full periods (16 seconds)

I optimize quadratic deviation from “lying
eight”

I choose one second sampling time

I use real-time iterations
recall: negligible feedback delay



Weak Kick

Open loop controlled system:
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Crash after 5 seconds

NMPC controlled system:
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Strong Kick
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Robustness Test with Strong Random Kicks
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Summary

I Nonlinear Model Predictive Control (NMPC) allows
optimal control of real world processes. Requires online
optimization.

I Online optimization by no means just an application of
fast offline optimization methods!

I Direct, simultaneous optimal control algorithms
favourable for NMPC.

I Our algorithm based on:
I direct multiple shooting with Gauss-Newton algorithm
I initial value embedding to deliver tangential predictor
I real-time iterations to have minimal cycle times and

negligible feedback delay

I Nominal stability can be guaranteed.

I Thourougly tested numerically and experimentally.
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