Constrained Optimization

Moritz Diehl

(some slide material was provided by W. Bangerth, K. Mombaur)

Nonlinear Programming (Problem Class 3)

• General problem formulation:

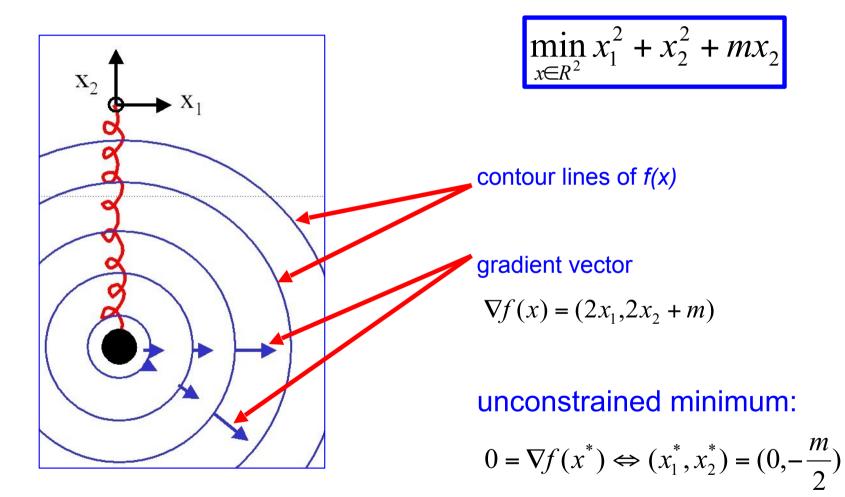
$$\min f(x) \qquad f: \quad D \subset R^n \to R$$

s.t.g(x) = 0 g: $D \subset R^n \to R^l$
 $h(x) \ge 0 \quad h: \quad D \subset R^n \to R^k$

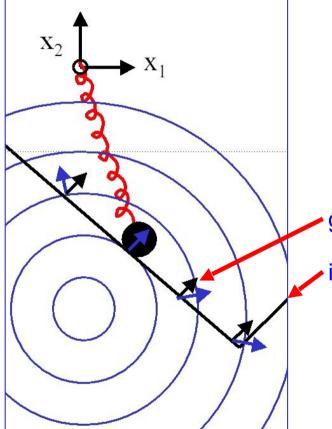
f objective function / cost function g equality constraints h inequality constraints

f,g,h shall be smooth (twice differentiable) functions

Recall: ball on a spring without constraints



Now: ball on a spring with constraints



$$\min f(x)$$

$$h_1(x) := 1 + x_1 + x_2 \ge 0$$

$$h_2(x) := 3 - x_1 + x_2 \ge 0$$

• gradient ∇h_1 of active constraint

h inactive constraint h_2

constrained minimum:

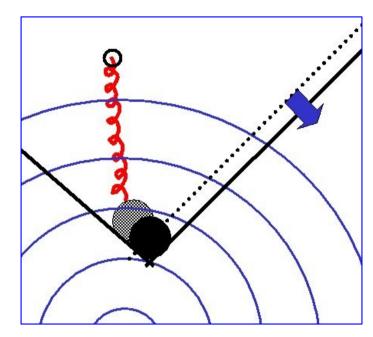
$$\nabla f(x^*) = \mu_1 \nabla h_1(x^*)$$

Lagrange multiplier

Ball on a spring with two active constraints



Multipliers as "shadow prices"



old constraint: $h(x) \ge 0$ new constraint: $h(x) + \varepsilon \ge 0$ What happens if we relax a constraint? Feasible set becomes bigger, so new minimum $f(x_{\epsilon}^{*})$ becomes smaller. How much would we gain?

$$f(x_{\varepsilon}^{*}) \approx f(x^{*}) - \mu \varepsilon$$

Multipliers show the hidden cost of constraints.

For constrained problems, introduce modification of objective function:

$$L(x,\lambda,\mu) := f(x^*) - \sum \lambda_i g_i(x) - \sum \mu_i h_i(x)$$

- equality multipliers λ_i may have both signs in a solution
- inequality multipliers μ_i cannot be negative (cf. shadow prices)
- for inactive constraints, multipliers μ_i are zero

Optimality conditions (constrained)

Karush-Kuhn-Tucker necessary conditions (KKT-conditions):

- x* feasible
- there exist λ^* , μ^* such that

$$\nabla_{x}L(x^{*},\lambda^{*},\mu^{*})=0$$

$$(\Leftrightarrow$$
 "Equilibrium" $\nabla f = \sum \lambda_i \nabla g_i + \sum \mu_i \nabla h_i$)

• $\mu^* \ge 0$ holds

• and it holds the complementarity condition

$$\mu^{*^T}h(x^*)=0$$

i.e. $\mu_i^*=0$ or $h_i(x^*)=0$ for each *i*

Sequential Quadratic Programming (SQP)

Constrained problem:

$$\min f(x)$$
$$g(x) = 0$$
$$h(x) \ge 0$$

SQP Idea: Consider successively quadratic approximations of the problem:

$$\min_{\Delta x} (\nabla f^{k})^{T} \Delta x + \frac{1}{2} \Delta x^{T} H^{k} \Delta x$$
$$g(x^{k}) + \nabla g(x^{k})^{T} \Delta x = 0$$
$$h(x^{k}) + \nabla h(x^{k})^{T} \Delta x \ge 0$$

SQP method

• if we use the exact hessian of the Lagrangian

$$H = \nabla^2 L(x, \lambda, \mu)$$

this leads to a newton-method for the optimality conditions and feasibility.

- with update-formulas for H^k , we obtain quasi-Newton SQP-methods.
- if we use appropriate update-formulas, we can have superlinear convergence.
- global convergence can be achieved by using a stepsize strategy.

SQP algorithm

- 0. Start with k=0, start value x^0 and $H^0=I$
- 1. Compute $f(x^k)$, $g(x^k)$, $h(x^k)$, $\nabla f(x^k)$, $\nabla g(x^k)$, $\nabla h(x^k)$
- 2. If x^k feasible and

 $\left\|\nabla L(x,\lambda,\mu)\right\| < \varepsilon$

then *stop* - convergence achieved

- 3. Solve quadratic problem and get Δx^k
- 4. Perform line search and get stepsize t^k

5. Iterate

$$x^{k+1} = x^k + t^k \Delta x^k$$

6. Update hessian

7. *k*=*k*+1, goto step 1

Summary

- Lagrangian function plays important role in constrained optimization
- Lagrange multipliers of inequalities have positive sign
- KKT conditions are necessary optimality conditions
- Look at SQP again in the following presentation...