Simulation methods for differential equations

Rien Quirynen

August 6, 2014

Introduction

The system of interest:

Introduction

The system of interest:

dynamic model:

Introduction

The system of interest:

Introduction

The system of interest:

Introduction

The system of interest:

Introduction

The system of interest:

$$
\dot{x}(t)=f(t, x(t), \mathbf{u}(\mathbf{t}))
$$

Introduction

The system of interest:

Introduction

The system of interest:

Introduction: IVP

THEOREM [Picard 1890, Lindelöf 1894]:

Initial value problem in ODE

$$
\begin{aligned}
\dot{x}(t) & =f(t, x(t), u(t), p), \quad t \in\left[t_{0}, t_{\mathrm{end}}\right] \\
x\left(t_{0}\right) & =x_{0}
\end{aligned}
$$

- with given initial state x_{0}, parameters p, and controls $u(t)$,
- and Lipschitz continuous $f(t, x(t), u(t), p)$

Introduction: IVP

THEOREM [Picard 1890, Lindelöf 1894]:

Initial value problem in ODE

$$
\begin{aligned}
\dot{x}(t) & =f(t, x(t), u(t), p), \quad t \in\left[t_{0}, t_{\mathrm{end}}\right] \\
x\left(t_{0}\right) & =x_{0}
\end{aligned}
$$

- with given initial state x_{0}, parameters p, and controls $u(t)$,
- and Lipschitz continuous $f(t, x(t), u(t), p)$
has unique solution

$$
x(t), t \in\left[t_{0}, t_{\mathrm{end}}\right]
$$

Introduction: numerical simulation

Aim of numerical simulation:

Compute $x(t), t \in\left[t_{0}, t_{\text {end }}\right]$ which approximately satisfies

$$
\begin{aligned}
\dot{x}(t) & =f(t, x(t), u(t), p), \quad t \in\left[t_{0}, t_{\mathrm{end}}\right] \\
x\left(t_{0}\right) & =x_{0}
\end{aligned}
$$

and $z(t)$ in case of index-1 DAE

$$
\begin{aligned}
\dot{x}(t) & =f(t, x(t), z(t), u(t), p) \\
0 & =g(t, x(t), z(t), u(t), p), \quad t \in\left[t_{0}, t_{\mathrm{end}}\right] \\
x\left(t_{0}\right) & =x_{0}
\end{aligned}
$$

NOTE: interested in values at discrete times $t_{i} \in\left[t_{0}, t_{\text {end }}\right]$, especially $t=t_{\text {end }}$

Introduction: numerical simulation

Let us define the exact trajectory $x(t), t \in\left[t_{0}, t_{\text {end }}\right]$ and a set of discrete time steps t_{0}, t_{1}, \ldots

Introduction: numerical simulation

Let us define the exact trajectory $x(t), t \in\left[t_{0}, t_{\text {end }}\right]$ and a set of discrete time steps t_{0}, t_{1}, \ldots

Local error:

$$
e\left(t_{i}\right)=x\left(t_{i}\right)-x\left(t_{i} ; t_{i-1}, x\left(t_{i-1}\right)\right)
$$

Introduction: numerical simulation

Let us define the exact trajectory $x(t), t \in\left[t_{0}, t_{\text {end }}\right]$ and a set of discrete time steps t_{0}, t_{1}, \ldots

Local error:

$$
e\left(t_{i}\right)=x\left(t_{i}\right)-x\left(t_{i} ; t_{i-1}, x\left(t_{i-1}\right)\right)
$$

Global error or "transported error":

$$
E\left(t_{i}\right)=x\left(t_{i}\right)-x\left(t_{i} ; t_{0}, x_{0}\right)
$$

Introduction: important properties

Let us define the stepsize h such that $t_{i+1}=t_{i}+h$

Introduction: important properties

Let us define the stepsize h such that $t_{i+1}=t_{i}+h$
convergence: A method is convergent when its values converge to the exact solution for $h \rightarrow 0$.

Introduction: important properties

Let us define the stepsize h such that $t_{i+1}=t_{i}+h$
convergence: A method is convergent when its values converge to the exact solution for $h \rightarrow 0$.
order: The method has order p if the local error

$$
\lim _{h \rightarrow 0} e\left(t_{i}\right)=O\left(h^{p+1}\right)
$$

NOTE: consistency when $p>0$ (necessary for convergence)

Introduction: important properties

Let us define the stepsize h such that $t_{i+1}=t_{i}+h$
convergence: A method is convergent when its values converge to the exact solution for $h \rightarrow 0$.
order: The method has order p if the local error

$$
\lim _{h \rightarrow 0} e\left(t_{i}\right)=O\left(h^{p+1}\right)
$$

NOTE: consistency when $p>0$ (necessary for convergence)
stability: 'damping' of errors, see stiffness

Introduction: important properties

Let us define the stepsize h such that $t_{i+1}=t_{i}+h$
convergence: A method is convergent when its values converge to the exact solution for $h \rightarrow 0 . \rightarrow$ minimum!
order: The method has order p if the local error

$$
\lim _{h \rightarrow 0} e\left(t_{i}\right)=O\left(h^{p+1}\right)
$$

NOTE: consistency when $p>0$ (necessary for convergence)
stability: 'damping' of errors, see stiffness

Overview

Classes of numerical methods:

General Linear Methods

Overview

Classes of numerical methods:

Multistep methods

Each method takes a step forward in time to find the next solution point, but this can be based either:

Multistep methods

Each method takes a step forward in time to find the next solution point, but this can be based either:

- on the previous point and its derivative, often with intermediate steps (see Runge-Kutta)

Multistep methods

Each method takes a step forward in time to find the next solution point, but this can be based either:

- on the previous point and its derivative, often with intermediate steps (see Runge-Kutta)

- on a certain amount of previous points and their derivatives

Multistep methods

Each method takes a step forward in time to find the next solution point, but this can be based either:

- on the previous point and its derivative, often with intermediate steps (see Runge-Kutta)

- on a certain amount of previous points and their derivatives

\Rightarrow good starting procedure needed!

Linear multistep methods

Let us consider the simplified system $\dot{x}(t)=f(t, x(t))$.
A s-step LM method then uses $x_{i}, f_{i}=f\left(t_{i}, x_{i}\right)$ for $i=n-s, \ldots, n-1$ to compute $x_{n} \approx x\left(t_{n}\right)$:

$$
\begin{aligned}
& x_{n}+a_{s-1} x_{n-1}+\ldots+a_{0} x_{n-s}= \\
& \quad h\left(b_{s} f_{n}+b_{s-1} f_{n-1}+\ldots+b_{0} f_{n-s}\right)
\end{aligned}
$$

Linear multistep methods

Let us consider the simplified system $\dot{x}(t)=f(t, x(t))$.
A s-step LM method then uses $x_{i}, f_{i}=f\left(t_{i}, x_{i}\right)$ for $i=n-s, \ldots, n-1$ to compute $x_{n} \approx x\left(t_{n}\right)$:

$$
\begin{aligned}
& \mathbf{x}_{\mathbf{n}}+a_{s-1} x_{n-1}+\ldots+a_{0} x_{n-s}= \\
& \quad h\left(\underline{b_{s}} \mathbf{f}_{\mathbf{n}}+b_{s-1} f_{n-1}+\ldots+b_{0} f_{n-s}\right)
\end{aligned}
$$

explicit $\left(b_{s}=0\right) \quad \leftrightarrow \quad$ implicit $\left(b_{s} \neq 0\right)$

Linear multistep methods

Let us consider the simplified system $\dot{x}(t)=f(t, x(t))$.
A s-step LM method then uses $x_{i}, f_{i}=f\left(t_{i}, x_{i}\right)$ for $i=n-s, \ldots, n-1$ to compute $x_{n} \approx x\left(t_{n}\right)$:

$$
\begin{aligned}
& \mathbf{x}_{\mathbf{n}}+a_{s-1} x_{n-1}+\ldots+a_{0} x_{n-s}= \\
& \quad h\left(\underline{b_{s}} \mathbf{f}_{\mathbf{n}}+b_{s-1} f_{n-1}+\ldots+b_{0} f_{n-s}\right)
\end{aligned}
$$

$$
\text { explicit }\left(b_{s}=0\right) \quad \leftrightarrow \quad \text { implicit }\left(b_{s} \neq 0\right)
$$

Three main families:

- Adams-Bashforth (explicit)
- Adams-Moulton (implicit)
- Backward differentiation formulas (BDF)

Linear multistep methods: Adams

Let us consider the time step in integrated form

$$
x\left(t_{n}\right)=x\left(t_{n-1}\right)+\int_{t_{n-1}}^{t_{n}} f(t, x(t)) \mathrm{d} t
$$

Linear multistep methods: Adams

Let us consider the time step in integrated form

$$
x\left(t_{n}\right)=x\left(t_{n-1}\right)+\int_{t_{n-1}}^{t_{n}} f(t, x(t)) \mathrm{d} t
$$

in which Adams approximates $f(t, x(t))$ by the interpolating polynomial through $\left(x_{i}, f_{i}\right)$ for $i=n-s, \ldots, n-1$.

Linear multistep methods: Adams

Let us consider the time step in integrated form

$$
x\left(t_{n}\right)=x\left(t_{n-1}\right)+\int_{t_{n-1}}^{t_{n}} f(t, x(t)) \mathrm{d} t
$$

in which Adams approximates $f(t, x(t))$ by the interpolating polynomial through $\left(x_{i}, f_{i}\right)$ for $i=n-s, \ldots, n-1$.

Explicit examples:

- $s=1: \quad x_{n}=x_{n-1}+h f_{n-1}$ (Euler)
- $s=2: \quad x_{n}=x_{n-1}+h\left(\frac{3}{2} f_{n-1}-\frac{1}{2} f_{n-2}\right)$
- ...

Linear multistep methods: Adams

Let us consider the time step in integrated form

$$
x\left(t_{n}\right)=x\left(t_{n-1}\right)+\int_{t_{n-1}}^{t_{n}} f(t, x(t)) \mathrm{d} t
$$

in which Adams approximates $f(t, x(t))$ by the interpolating polynomial through $\left(x_{i}, f_{i}\right)$ for $i=n-s, \ldots, n-1$.

Implicit examples:

- $s=0: \quad x_{n}=x_{n-1}+h f_{n}$ (implicit Euler)
- $s=1: \quad x_{n}=x_{n-1}+h\left(\frac{1}{2} f_{n}+\frac{1}{2} f_{n-1}\right)$ (trapezoidal)
- $s=2: \quad x_{n}=x_{n-1}+h\left(\frac{5}{12} f_{n}+\frac{8}{12} f_{n-1}-\frac{1}{12} f_{n-2}\right)$

Linear multistep methods: Adams

Let us consider the time step in integrated form

$$
x\left(t_{n}\right)=x\left(t_{n-1}\right)+\int_{t_{n-1}}^{t_{n}} f(t, x(t)) \mathrm{d} t
$$

in which Adams approximates $f(t, x(t))$ by the interpolating polynomial through $\left(x_{i}, f_{i}\right)$ for $i=n-s, \ldots, n-1$.

Implicit examples:

- $s=0: \quad x_{n}=x_{n-1}+h \underline{f_{n}}$ (implicit Euler)
- $s=1: \quad x_{n}=x_{n-1}+h\left(\frac{1}{2} f_{n}+\frac{1}{2} f_{n-1}\right)$ (trapezoidal)
- $s=2: \quad x_{n}=x_{n-1}+h\left(\frac{5}{12} \underline{f}_{n}+\frac{8}{12} f_{n-1}-\frac{1}{12} f_{n-2}\right)$
- ...

NOTE: implicit methods include $\left(x_{n}, f_{n}\right) \Rightarrow$ nonlinear system

Linear multistep methods: BDF

numerical integration \leftrightarrow numerical differentiation
Let us again consider the interpolating polynomial $q(x)$ through $\left(x_{i}, f_{i}\right)$ for $i=n-s, \ldots, \mathbf{n}$ (implicit!) on which we impose

Linear multistep methods: BDF

numerical integration \leftrightarrow numerical differentiation
Let us again consider the interpolating polynomial $q(x)$ through $\left(x_{i}, f_{i}\right)$ for $i=n-s, \ldots, \mathbf{n}$ (implicit!) on which we impose

$$
\dot{q}\left(x_{n}\right)=f\left(t_{n}, x_{n}\right)
$$

to obtain x_{n} as the solution of this nonlinear system.

Linear multistep methods: BDF

numerical integration $\leftrightarrow \quad$ numerical differentiation
Let us again consider the interpolating polynomial $q(x)$ through $\left(x_{i}, f_{i}\right)$ for $i=n-s, \ldots, \mathbf{n}$ (implicit!) on which we impose

$$
\dot{q}\left(x_{n}\right)=f\left(t_{n}, x_{n}\right)
$$

to obtain x_{n} as the solution of this nonlinear system.
All BDF methods are implicit, some examples:

- $s=1: \quad x_{n}-x_{n-1}=h f_{n}$ (implicit Euler)
- $s=2: \quad \frac{3}{2} x_{n}-2 x_{n-1}+\frac{1}{2} x_{n-2}=h f_{n}$
- ...

Linear multistep methods: BDF

numerical integration $\leftrightarrow \quad$ numerical differentiation
Let us again consider the interpolating polynomial $q(x)$ through $\left(x_{i}, f_{i}\right)$ for $i=n-s, \ldots, \mathbf{n}$ (implicit!) on which we impose

$$
\dot{q}\left(x_{n}\right)=f\left(t_{n}, x_{n}\right)
$$

to obtain x_{n} as the solution of this nonlinear system.
All BDF methods are implicit, some examples:

- $s=1: \quad x_{n}-x_{n-1}=h f_{n}$ (implicit Euler)
- $s=2: \quad \frac{3}{2} x_{n}-2 x_{n-1}+\frac{1}{2} x_{n-2}=h f_{n}$
- ...

NOTE: widely used for stiff systems !!

Intermezzo: stiffness ${ }^{1}$

"... stiff equations are equations where certain implicit methods, in paricular BDF, perform better, usually tremendously better, than explicit ones."

- (Curtiss \& Hirschfelder, 1952)

[^0]
Intermezzo: stiffness ${ }^{1}$

"... stiff equations are equations where certain implicit methods, in paricular BDF, perform better, usually tremendously better, than explicit ones."

- (Curtiss \& Hirschfelder, 1952)
"... Around 1960, things became completely different and everyone became aware that the world was full of stiff problems."
- (G. Dahlquist, 1985)

[^1]
Intermezzo: stiffness example

Let us consider the following simple one-dimensional system

$$
\dot{x}(t)=-50(x(t)-\cos (t))
$$

Intermezzo: stiffness example

Let us consider the following simple one-dimensional system

$$
\dot{x}(t)=-50(x(t)-\cos (t))
$$

Intermezzo: stiffness example

Let us consider the following simple one-dimensional system

$$
\dot{x}(t)=-50(x(t)-\cos (t))
$$

Intermezzo: stiffness example

Let us consider the following simple one-dimensional system

$$
\dot{x}(t)=-50(x(t)-\cos (t))
$$

Intermezzo: stiffness

Stiffness depends largely on

Intermezzo: stiffness

Stiffness depends largely on

- the eigenvalues $\lambda(t)$ of the Jacobian $\frac{\partial f}{\partial x}$
- but also system dimension, smoothness of the solution, ...

Intermezzo: stiffness

Stiffness depends largely on

- the eigenvalues $\lambda(t)$ of the Jacobian $\frac{\partial f}{\partial x}$
- but also system dimension, smoothness of the solution, ...

- various mathematical definitions exist
- new concepts needed:

A-stability, I-stability, A(α)-stability, L-stability, ...

Intermezzo: stiffness

Stiffness depends largely on

- the eigenvalues $\lambda(t)$ of the Jacobian $\frac{\partial f}{\partial x}$
- but also system dimension, smoothness of the solution, ...

- various mathematical definitions exist
- new concepts needed:

A-stability, I-stability, A(α)-stability, L-stability, ...
Main message: stiff systems require (semi-)implicit methods!

Linear multistep methods: software

Simulation for optimization:

- SUNDIALS: BDF and Adams in CVODE(S) + BDF in IDA(S)
- SolvIND: BDF in DAESOL-II + RK in RKFSWT
- ACADO Toolkit: BDF and RK
- ...

Overview

Classes of numerical methods:

Overview

Classes of numerical methods:

Overview

Runge-Kutta methods:

Overview

Runge-Kutta methods:

Explicit Runge-Kutta (ERK) methods

The simplest ERK method is explicit Euler

Explicit Runge-Kutta (ERK) methods

The simplest ERK method is explicit Euler

$$
x_{n}=x_{n-1}+h f_{n-1}
$$

which is consistent of order one (minimum).

Explicit Runge-Kutta (ERK) methods

The simplest ERK method is explicit Euler

$$
x_{n}=x_{n-1}+h f_{n-1}
$$

which is consistent of order one (minimum).
BUT: it is typically not a practical method... Why?

Explicit Runge-Kutta (ERK) methods

The simplest ERK method is explicit Euler

$$
x_{n}=x_{n-1}+h f_{n-1}
$$

which is consistent of order one (minimum).
BUT: it is typically not a practical method... Why?
Higher order methods need much fewer steps for same accuracy!

Explicit Runge-Kutta (ERK) methods

The most popular is the following $4^{\text {th }}$ order method

Explicit Runge-Kutta (ERK) methods

The most popular is the following $4^{\text {th }}$ order method

$$
\begin{aligned}
& k_{1}=f\left(t_{n-1}, x_{n-1}\right) \\
& k_{2}=f\left(t_{n-1}+\frac{h}{2}, x_{n-1}+\frac{h}{2} k_{1}\right) \\
& k_{3}=f\left(t_{n-1}+\frac{h}{2}, x_{n-1}+\frac{h}{2} k_{2}\right) \\
& k_{4}=f\left(t_{n-1}+h, x_{n-1}+h k_{3}\right) \\
& x_{n}=x_{n-1}+\frac{h}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
\end{aligned}
$$

Explicit Runge-Kutta (ERK) methods

The most popular is the following $4^{\text {th }}$ order method

$$
\begin{aligned}
& k_{1}=f\left(t_{n-1}, x_{n-1}\right) \\
& k_{2}=f\left(t_{n-1}+\frac{h}{2}, x_{n-1}+\frac{h}{2} k_{1}\right) \\
& k_{3}=f\left(t_{n-1}+\frac{h}{2}, x_{n-1}+\frac{h}{2} k_{2}\right) \\
& k_{4}=f\left(t_{n-1}+h, x_{n-1}+h k_{3}\right) \\
& x_{n}=x_{n-1}+\frac{h}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
\end{aligned}
$$

Explicit Runge-Kutta (ERK) methods

The RK4 method

$$
\begin{aligned}
& k_{1}=f\left(t_{n-1}, x_{n-1}\right) \\
& k_{2}=f\left(t_{n-1}+\frac{h}{2}, x_{n-1}+\frac{h}{2} k_{1}\right) \\
& k_{3}=f\left(t_{n-1}+\frac{h}{2}, x_{n-1}+\frac{h}{2} k_{2}\right) \\
& k_{4}=f\left(t_{n-1}+h, x_{n-1}+h k_{3}\right) \\
& x_{n}=x_{n-1}+\frac{h}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
\end{aligned}
$$

Explicit Runge-Kutta (ERK) methods

So a general s-stage ERK method

$$
\begin{aligned}
& k_{1}=f\left(t_{n-1}, x_{n-1}\right) \\
& k_{2}=f\left(t_{n-1}+c_{2} h, x_{n-1}+a_{21} h k_{1}\right) \\
& k_{3}=f\left(t_{n-1}+c_{3} h, x_{n-1}+a_{31} h k_{1}+a_{32} h k_{2}\right)
\end{aligned}
$$

$$
k_{s}=f\left(t_{n-1}+c_{s} h, x_{n-1}+a_{s 1} h k_{1}+a_{s 2} h k_{2}+\ldots+a_{s, s-1} h k_{s-1}\right)
$$

$$
x_{n}=x_{n-1}+h \sum_{i=1}^{s} b_{i} k_{i}
$$

Explicit Runge-Kutta (ERK) methods

So a general s-stage ERK method

$$
\begin{aligned}
k_{1} & =f\left(t_{n-1}, x_{n-1}\right) \\
k_{2} & =f\left(t_{n-1}+c_{2} h, x_{n-1}+a_{21} h k_{1}\right) \\
k_{3} & =f\left(t_{n-1}+c_{3} h, x_{n-1}+a_{31} h k_{1}+a_{32} h k_{2}\right) \\
& \vdots \\
& \vdots \\
k_{s} & =f\left(t_{n-1}+c_{s} h, x_{n-1}+a_{s 1} h k_{1}+a_{s 2} h k_{2}+\ldots+a_{s, s-1} h k_{s-1}\right) \\
x_{n} & =x_{n-1}+h \sum_{i=1}^{s} b_{i} k_{i}
\end{aligned}
$$

Explicit Runge-Kutta (ERK) methods

So a general s-stage ERK method
$k_{1}=f\left(t_{n-1}, x_{n-1}\right)$
$k_{2}=f\left(t_{n-1}+c_{2} h, x_{n-1}+a_{21} h k_{1}\right)$
$k_{3}=f\left(t_{n-1}+c_{3} h, x_{n-1}+a_{31} h k_{1}+a_{32} h k_{2}\right)$
$k_{s}=f\left(t_{n-1}+c_{s} h, x_{n-1}+a_{s 1} h k_{1}+a_{s 2} h k_{2}+\ldots+a_{s, s-1} h k_{s-1}\right)$
$x_{n}=x_{n-1}+h \sum_{i=1}^{s} b_{i} k_{i}$

NOTE: each Runge-Kutta method is defined by its Butcher table! other examples are e.g. the methods of Runge and Heun, ...

Intermezzo: Step size control

Typically:
no constant step size but suitable error control

Intermezzo: Step size control

Typically:
no constant step size but suitable error control based on a local error estimate:

$$
e_{i} \approx\left\|x\left(t_{i}\right)-x\left(t_{i} ; t_{i-1}, x\left(t_{i-1}\right)\right)\right\|
$$

Intermezzo: Step size control

Example:
Euler: $x_{n}=x_{n-1}+h f_{n-1}$

Intermezzo: Step size control

Example:
Euler: $x_{n}=x_{n-1}+h f_{n-1}$
Let us create a reference solution using 2 steps with $h / 2$:

$$
\begin{aligned}
x_{n-1 / 2} & =x_{n-1}+\frac{h}{2} f_{n-1} \\
\tilde{x}_{n} & =x_{n-1 / 2}+\frac{h}{2} f_{n-1 / 2}
\end{aligned}
$$

Intermezzo: Step size control

Example:
Euler: $x_{n}=x_{n-1}+h f_{n-1}$
Let us create a reference solution using 2 steps with $h / 2$:

$$
\begin{aligned}
x_{n-1 / 2} & =x_{n-1}+\frac{h}{2} f_{n-1} \\
\tilde{x}_{n} & =x_{n-1 / 2}+\frac{h}{2} f_{n-1 / 2}
\end{aligned}
$$

$e_{n}=\tilde{x}_{n}-x_{n} \quad \Rightarrow \quad$ accept $/$ reject
and update the step size: $h_{n}=0.9 h_{n-1} \sqrt[p+1]{\frac{T O L}{E}}$

Intermezzo: Step size control

Example:
Euler: $x_{n}=x_{n-1}+h f_{n-1}$
Let us create a reference solution using 2 steps with $h / 2$:

$$
\begin{aligned}
x_{n-1 / 2} & =x_{n-1}+\frac{h}{2} f_{n-1} \\
\tilde{x}_{n} & =x_{n-1 / 2}+\frac{h}{2} f_{n-1 / 2}
\end{aligned}
$$

$e_{n}=\tilde{x}_{n}-x_{n} \quad \Rightarrow \quad$ accept $/$ reject
and update the step size: $h_{n}=0.9 h_{n-1} \sqrt[p+1]{\frac{T O L}{E}}$
Embedded methods: Fehlberg (e.g. RKF45), Dormand-Prince, ...

Overview

Runge-Kutta methods:

Overview

Runge-Kutta methods:

Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

$$
\begin{aligned}
k_{1} & =f\left(t_{n-1}+c_{1} h, x_{n-1}+h \sum_{j=1}^{s} a_{1 j} k_{j}\right) \\
& \vdots \\
k_{s} & =f\left(t_{n-1}+c_{s} h, x_{n-1}+h \sum_{j=1}^{s} a_{s j} k_{j}\right) \\
x_{n} & =x_{n-1}+h \sum_{i=1}^{s} b_{i} k_{i}
\end{aligned}
$$

c_{1}	a_{11}	\cdots	$a_{1 s}$
c_{2}	a_{21}	\cdots	$a_{2 s}$
\vdots	\vdots		\vdots
c_{s}	$a_{s 1}$	\cdots	$a_{s s}$
	b_{1}	\cdots	b_{s}

Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

$$
\begin{aligned}
& k_{1}=f\left(t_{n-1}+c_{1} h, x_{n-1}+h \sum_{j=1}^{s} a_{1 j} k_{j}\right) \\
& \vdots \\
& k_{s}=f\left(t_{n-1}+c_{s} h, x_{n-1}+h \sum_{j=1}^{s} a_{s} k_{j}\right) \\
& x_{n}=x_{n-1}+h \sum_{i=1}^{s} b_{i} k_{i}
\end{aligned}
$$

pro: nice properties (order, stability)

Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

$$
\begin{aligned}
& \mathbf{k}_{1}=f\left(t_{n-1}+c_{1} h, x_{n-1}+h \sum_{j=1}^{s} a_{1 j} \mathbf{k}_{\mathrm{j}}\right) \\
& \vdots \\
& \mathbf{k}_{\mathbf{s}}=f\left(t_{n-1}+c_{s} h, x_{n-1}+h \sum_{j=1}^{s} a_{g} \mathbf{k}_{\mathrm{j}}\right) \\
& x_{n}=x_{n-1}+h \sum_{i=1}^{s} b_{i} k_{i}
\end{aligned}
$$

c_{1}	a_{11}	\cdots	$a_{1 s}$
c_{2}	a_{21}	\cdots	$a_{2 s}$
\vdots	\vdots		\vdots
c_{s}	$a_{s 1}$	\cdots	$a_{s s}$
	b_{1}	\cdots	b_{s}

pro: nice properties (order, stability)
con: large nonlinear system

Implicit Runge-Kutta (IRK) methods

Explicit ODE system:
$\dot{x}(t)=f(t, x(t))$

$$
\begin{aligned}
& k_{1}=f\left(t_{n-1}+c_{1} h, x_{n-1}+h \sum_{j=1}^{s} a_{1 j} k_{j}\right) \\
& \vdots \\
& k_{s}=f\left(t_{n-1}+c_{s} h, x_{n-1}+h \sum_{j=1}^{s} a_{s j} k_{j}\right) \\
& x_{n}=x_{n-1}+h \sum_{i=1}^{s} b_{i} k_{i}
\end{aligned}
$$

Implicit Runge-Kutta (IRK) methods

Explicit ODE system:
$\dot{x}(t)=f(t, x(t))$
$k_{1}=f\left(t_{n-1}+c_{1} h, x_{n-1}+n \sum_{j=1}^{s} a_{j j} k_{j}\right)$
$k_{s}=f\left(t_{n-1}+c_{s} h, x_{n-1}+h \sum_{j=1}^{s} a_{s j} k_{j}\right)$
$x_{n}=x_{n-1}+h \sum_{i=1}^{s} b_{i} k_{i}$

Implicit ODE/DAE (index 1):
$0=f(t, \dot{x}(t), x(t), z(t))$
$0=f\left(t_{n-1}+c_{1} h, k_{1}, x_{n-1}+h \sum_{j=1}^{s} a_{1 j} k_{j}, Z_{1}\right)$
$0=f\left(t_{n-1}+c_{s} h, k_{s}, x_{n-1}+h \sum_{j=1}^{s} a_{s j} k_{j}, Z_{s}\right)$
$x_{n}=x_{n-1}+h \sum_{i=1}^{s} b_{i} k_{i}$

Implicit Runge-Kutta (IRK) methods

Explicit ODE system:
$\dot{x}(t)=f(t, x(t))$
$\mathbf{k}_{1}=f\left(t_{n-1}+c_{1} h, x_{n-1}+h \sum_{j=1}^{s} a_{1 j} \mathrm{k}_{\mathrm{j}}\right)$
$\mathbf{k}_{\mathbf{s}}=f\left(t_{n-1}+c_{s} h, x_{n-1}+h \sum_{j=1}^{s} a_{s j} \mathbf{k}_{\mathbf{j}}\right)$
$x_{n}=x_{n-1}+h \sum_{i=1}^{s} b_{i} k_{i}$

Implicit ODE/DAE (index 1):
$0=f(t, \dot{x}(t), x(t), z(t))$
$0=f\left(t_{n-1}+c_{1} h, \mathbf{k}_{1}, x_{n-1}+h \sum_{j=1}^{s} a_{1 j} \mathbf{k}_{\mathbf{j}}, \mathbf{Z}_{1}\right)$
$0=f\left(t_{n-1}+c_{s} h, \mathbf{k}_{\mathrm{s}}, x_{n-1}+h \sum_{j=1}^{s} a_{s} \mathbf{k}_{\mathrm{j}}, \mathbf{Z}_{\mathrm{s}}\right)$
$x_{n}=x_{n-1}+h \sum_{i=1}^{s} b_{i} k_{i}$

Collocation methods

Important family of IRK methods:

- distinct c_{i} 's (nonconfluent)
- polynomial $q(t)$ of degree s

Collocation methods

Important family of IRK methods:

- distinct c_{i} 's (nonconfluent)
- polynomial $q(t)$ of degree s

$$
\begin{aligned}
q\left(t_{n-1}\right) & =x_{n-1} \\
\dot{q}\left(t_{n-1}+c_{1} h\right) & =f\left(t_{n-1}+c_{1} h, q\left(t_{n-1}+c_{1} h\right)\right)
\end{aligned}
$$

$$
\dot{q}\left(t_{n-1}+c_{s} h\right)=f\left(t_{n-1}+c_{s} h, q\left(t_{n-1}+c_{s} h\right)\right)
$$

continuous approximation

$$
\Rightarrow \quad x_{n}=q\left(t_{n-1}+h\right)
$$

Collocation methods

Important family of IRK methods:

- distinct c_{i} 's (nonconfluent)
- polynomial $q(t)$ of degree s

$$
\begin{aligned}
q\left(t_{n-1}\right) & =x_{n-1} \\
\dot{q}\left(t_{n-1}+c_{1} h\right) & =f\left(t_{n-1}+c_{1} h, q\left(t_{n-1}+c_{1} h\right)\right)
\end{aligned}
$$

$$
\dot{q}\left(t_{n-1}+c_{s} h\right)=f\left(t_{n-1}+c_{s} h, q\left(t_{n-1}+c_{s} h\right)\right)
$$

continuous approximation

$$
\Rightarrow \quad x_{n}=q\left(t_{n-1}+h\right)
$$

NOTE: this is very popular in direct optimal control!

Collocation methods

How to implement a collocation method?

$$
\begin{aligned}
q\left(t_{n-1}\right) & =x_{n-1} \\
\dot{q}\left(t_{n-1}+c_{1} h\right) & =f\left(t_{n-1}+c_{1} h, q\left(t_{n-1}+c_{1} h\right)\right) \\
& \vdots \\
\dot{q}\left(t_{n-1}+c_{s} h\right) & =f\left(t_{n-1}+c_{s} h, q\left(t_{n-1}+c_{s} h\right)\right)
\end{aligned}
$$

Collocation methods

How to implement a collocation method?

$$
\begin{aligned}
q\left(t_{n-1}\right) & =x_{n-1} \\
\dot{q}\left(t_{n-1}+c_{1} h\right) & =f\left(t_{n-1}+c_{1} h, q\left(t_{n-1}+c_{1} h\right)\right) \\
& \vdots \\
\dot{q}\left(t_{n-1}+c_{s} h\right) & =f\left(t_{n-1}+c_{s} h, q\left(t_{n-1}+c_{s} h\right)\right)
\end{aligned}
$$

This is nothing else than...

$$
\begin{aligned}
& k_{1}=f\left(t_{n-1}+c_{1} h, x_{n-1}+h \sum_{j=1}^{s} a_{1 j} k_{j}\right) \\
& \vdots \\
& k_{s}=f\left(t_{n-1}+c_{s} h, x_{n-1}+h \sum_{j=1}^{s} a_{s j} k_{j}\right) \\
& x_{n}=x_{n-1}+h \sum_{i=1}^{s} b_{i} k_{i}
\end{aligned}
$$

where the Butcher table is defined by the collocation nodes c_{i}.

Collocation methods

Example: The Gauss methods

Collocation methods

Example: The Gauss methods

- roots of Legendre polynomials
- A-stable
- optimal order
($p=2 s$)

Collocation methods

Example: The Gauss methods

- roots of Legendre polynomials
- A-stable
- optimal order
($p=2 s$)

$$
\begin{array}{ccc}
c_{1}=\frac{1}{2}, & s=1, & p=2, \\
c_{1}=\frac{1}{2}-\frac{\sqrt{3}}{6}, c_{2}=\frac{1}{2}+\frac{\sqrt{3}}{6}, & s=2, & p=4, \\
c_{1}=\frac{1}{2}-\frac{\sqrt{15}}{10}, c_{2}=\frac{1}{2}, c_{3}=\frac{1}{2}+\frac{\sqrt{15}}{10}, & s=3, & p=6 .
\end{array}
$$

Collocation methods

Example: The Gauss methods

- roots of Legendre polynomials
- A-stable
- optimal order

$$
(p=2 s)
$$

At least as popular:
Radau IIA methods ($p=2 s-1$, stiffly accurate, L-stable)

Overview

Runge-Kutta methods:

ERK

DIRK

SDIRK

ESDIRK

IRK

Overview

Runge-Kutta methods:

Semi-implicit Runge-Kutta methods

The matrix A is not strictly lower triangular...

Semi-implicit Runge-Kutta methods

The matrix A is not strictly lower triangular ... but there is a specific structure!

- Diagonal IRK (DIRK)
- Singly DIRK (SDIRK)
- Explicit SDIRK (ESDIRK)

ERK

DIRK

SDIRK

ESDIRK

IRK

Summary

- High order schemes preferable for smooth problems

Summary

- High order schemes preferable for smooth problems
- Explicit methods are good for non-stiff systems

Summary

- High order schemes preferable for smooth problems
- Explicit methods are good for non-stiff systems
- For stiff and/or implicit models, the use of implicit methods (BDF, IRK, ...) is highly recommended

References

- E. Hairer, S.P. Nørsett, and G. Wanner: Solving Ordinary Differential Equations I, Springer Series in Computational Mathematics, Berlin, 1993.
- E. Hairer and G. Wanner: Solving Ordinary Differential Equations II Stiff and Differential-Algebraic Problems, Springer, Berlin Heidelberg, 1996.
- K.E. Brenan, S.L. Campbell, and L.R. Petzold: The Numerical Solution of Initial Value Problems in Differential-Algebraic Equations, SIAM Classics Series, 1996.
- U.M. Ascher and L.R. Petzold: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, 1998.

[^0]: ${ }^{1}$ Hairer and Wanner, Solving Ordinary Differential Equations II - Stiff and Differential-Algebraic Problems.

[^1]: ${ }^{1}$ Hairer and Wanner, Solving Ordinary Differential Equations II - Stiff and Differential-Algebraic Problems.

