Simulation methods for differential equations

Rien Quirynen

August 6, 2014

The system of interest:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

The system of interest:

dynamic model:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The system of interest:

dynamic model:

deterministic set of differential equations (ODE/DAE/PDE)

The system of interest:

dynamic model:

deterministic set of differential equations (ODE/DAE/PDE)

The system of interest:

The system of interest:

$$\dot{x}(t) = f(t, x(t), \mathbf{u(t)})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The system of interest:

The system of interest:

Introduction: IVP

THEOREM [Picard 1890, Lindelöf 1894]:

Initial value problem in ODE

$$\dot{x}(t) = f(t, x(t), u(t), p), \quad t \in [t_0, t_{end}], \ x(t_0) = x_0$$

- with given initial state x_0 , parameters p, and controls u(t),
- and Lipschitz continuous f(t, x(t), u(t), p)

Introduction: IVP

THEOREM [Picard 1890, Lindelöf 1894]:

Initial value problem in ODE

$$\dot{x}(t) = f(t, x(t), u(t), p), \quad t \in [t_0, t_{end}], \ x(t_0) = x_0$$

- with given initial state x_0 , parameters p, and controls u(t),
- and Lipschitz continuous f(t, x(t), u(t), p)

has unique solution

$$x(t), t \in [t_0, t_{end}]$$

(日) (四) (注) (注) (三)

4/34

Aim of numerical simulation:

Compute $x(t), t \in [t_0, t_{end}]$ which approximately satisfies

$$\dot{x}(t) = f(t, x(t), u(t), p), \quad t \in [t_0, t_{ ext{end}}], \ x(t_0) = x_0,$$

and z(t) in case of index-1 DAE

$$\dot{x}(t) = f(t, x(t), z(t), u(t), p),$$

 $0 = g(t, x(t), z(t), u(t), p), \quad t \in [t_0, t_{end}],$
 $x(t_0) = x_0$

NOTE: interested in values at discrete times $t_i \in [t_0, t_{end}]$, especially $t = t_{end}$

Let us define the exact trajectory $x(t), t \in [t_0, t_{end}]$ and a set of discrete time steps t_0, t_1, \ldots

Let us define the exact trajectory $x(t), t \in [t_0, t_{end}]$ and a set of discrete time steps t_0, t_1, \ldots

Local error:

$$e(t_i) = x(t_i) - x(t_i; t_{i-1}, x(t_{i-1}))$$

◆□> ◆□> ◆目> ◆目> ◆日> ◆□>

6/34

Let us define the exact trajectory $x(t), t \in [t_0, t_{end}]$ and a set of discrete time steps t_0, t_1, \ldots

Local error:

$$e(t_i) = x(t_i) - x(t_i; t_{i-1}, x(t_{i-1}))$$

Global error or "transported error":

$$E(t_i) = x(t_i) - x(t_i; t_0, x_0)$$

(ロ) (個) (目) (目) 目) の

6/34

Let us define the stepsize *h* such that $t_{i+1} = t_i + h$

Let us define the stepsize *h* such that $t_{i+1} = t_i + h$

convergence: A method is convergent when its values converge to the exact solution for $h \rightarrow 0$.

Let us define the stepsize *h* such that $t_{i+1} = t_i + h$

convergence: A method is convergent when its values converge to the exact solution for $h \rightarrow 0$.

order: The method has order p if the local error

$$\lim_{h\to 0} e(t_i) = O(h^{p+1})$$

NOTE: consistency when p > 0 (necessary for convergence)

Let us define the stepsize *h* such that $t_{i+1} = t_i + h$

convergence: A method is convergent when its values converge to the exact solution for $h \rightarrow 0$.

order: The method has order p if the local error

$$\lim_{h\to 0} e(t_i) = O(h^{p+1})$$

NOTE: consistency when p > 0 (necessary for convergence)

stability: 'damping' of errors, see stiffness

Let us define the stepsize *h* such that $t_{i+1} = t_i + h$

convergence: A method is convergent when its values converge to the exact solution for $h \rightarrow 0$. \rightarrow minimum!

order: The method has order p if the local error

$$\lim_{h\to 0} e(t_i) = O(h^{p+1})$$

NOTE: consistency when p > 0 (necessary for convergence) **stability**: 'damping' of errors, see stiffness

Classes of numerical methods:

General Linear Methods

Classes of numerical methods:

Classes of numerical methods:

Classes of numerical methods:

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Classes of numerical methods:

Classes of numerical methods:

Each method takes a step forward in time to find the next solution point, but this can be based either:

Each method takes a step forward in time to find the next solution point, but this can be based either:

 on the previous point and its derivative, often with intermediate steps (see Runge-Kutta)

Each method takes a step forward in time to find the next solution point, but this can be based either:

 on the previous point and its derivative, often with intermediate steps (see Runge-Kutta)

on a certain amount of previous points and their derivatives

Each method takes a step forward in time to find the next solution point, but this can be based either:

 on the previous point and its derivative, often with intermediate steps (see Runge-Kutta)

on a certain amount of previous points and their derivatives

 \Rightarrow good starting procedure needed!

Linear multistep methods

Let us consider the simplified system $\dot{x}(t) = f(t, x(t))$. A *s*-step LM method then uses x_i , $f_i = f(t_i, x_i)$ for $i = n - s, \dots, n - 1$ to compute $x_n \approx x(t_n)$:

$$x_n + a_{s-1}x_{n-1} + \ldots + a_0x_{n-s} =$$

 $h(b_s f_n + b_{s-1}f_{n-1} + \ldots + b_0f_{n-s})$

Linear multistep methods

Let us consider the simplified system $\dot{x}(t) = f(t, x(t))$. A *s*-step LM method then uses x_i , $f_i = f(t_i, x_i)$ for $i = n - s, \dots, n - 1$ to compute $x_n \approx x(t_n)$:

$$\mathbf{x}_{\mathbf{n}} + a_{s-1}x_{n-1} + \ldots + a_0x_{n-s} = h\left(\underline{b}_{s}\mathbf{f}_{\mathbf{n}} + b_{s-1}f_{n-1} + \ldots + b_0f_{n-s}\right)$$

 $\text{explicit } (b_s = 0) \quad \leftrightarrow \quad \text{implicit } (b_s \neq 0)$

Linear multistep methods

Let us consider the simplified system $\dot{x}(t) = f(t, x(t))$. A *s*-step LM method then uses x_i , $f_i = f(t_i, x_i)$ for $i = n - s, \dots, n - 1$ to compute $x_n \approx x(t_n)$:

$$\mathbf{x}_{\mathbf{n}} + a_{s-1} \mathbf{x}_{n-1} + \dots + a_0 \mathbf{x}_{n-s} = h\left(\underline{b}_s \mathbf{f}_{\mathbf{n}} + b_{s-1} f_{n-1} + \dots + b_0 f_{n-s}\right)$$

 $\text{explicit } (b_s = 0) \quad \leftrightarrow \quad \text{implicit } (b_s \neq 0)$

Three main families:

- Adams-Bashforth (explicit)
- Adams-Moulton (implicit)
- Backward differentiation formulas (BDF)

Linear multistep methods: Adams

Let us consider the time step in integrated form

$$x(t_n) = x(t_{n-1}) + \int_{t_{n-1}}^{t_n} f(t, x(t)) dt$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

11/34

Linear multistep methods: Adams

Let us consider the time step in integrated form

$$x(t_n) = x(t_{n-1}) + \int_{t_{n-1}}^{t_n} f(t, x(t)) dt$$

in which Adams approximates f(t, x(t)) by the interpolating polynomial through (x_i, f_i) for i = n - s, ..., n - 1.

Linear multistep methods: Adams

Let us consider the time step in integrated form

$$x(t_n) = x(t_{n-1}) + \int_{t_{n-1}}^{t_n} f(t, x(t)) dt$$

11/34

in which Adams approximates f(t, x(t)) by the interpolating polynomial through (x_i, f_i) for i = n - s, ..., n - 1.

Explicit examples:

►
$$s = 1$$
: $x_n = x_{n-1} + h f_{n-1}$ (Euler)
► $s = 2$: $x_n = x_{n-1} + h \left(\frac{3}{2}f_{n-1} - \frac{1}{2}f_{n-2}\right)$
► ...
Linear multistep methods: Adams

Let us consider the time step in integrated form

$$x(t_n) = x(t_{n-1}) + \int_{t_{n-1}}^{t_n} f(t, x(t)) \, \mathrm{d}t$$

in which Adams approximates f(t, x(t)) by the interpolating polynomial through (x_i, f_i) for i = n - s, ..., n - 1.

Implicit examples:

> s = 0: x_n = x_{n-1} + h f_n (implicit Euler)
> s = 1: x_n = x_{n-1} + h (
$$\frac{1}{2}f_n + \frac{1}{2}f_{n-1}$$
) (trapezoidal)
> s = 2: x_n = x_{n-1} + h ($\frac{5}{12}f_n + \frac{8}{12}f_{n-1} - \frac{1}{12}f_{n-2}$)

Linear multistep methods: Adams

Let us consider the time step in integrated form

$$x(t_n) = x(t_{n-1}) + \int_{t_{n-1}}^{t_n} f(t, x(t)) dt$$

in which Adams approximates f(t, x(t)) by the interpolating polynomial through (x_i, f_i) for i = n - s, ..., n - 1.

Implicit examples:

▶
$$s = 0$$
: $x_n = x_{n-1} + h \underline{f_n}$ (implicit Euler)
▶ $s = 1$: $x_n = x_{n-1} + h \left(\frac{1}{2}\underline{f_n} + \frac{1}{2}f_{n-1}\right)$ (trapezoidal)
▶ $s = 2$: $x_n = x_{n-1} + h \left(\frac{5}{12}\underline{f_n} + \frac{8}{12}f_{n-1} - \frac{1}{12}f_{n-2}\right)$
▶ ...

NOTE: implicit methods include $(x_n, f_n) \Rightarrow$ **nonlinear system**

numerical integration \leftrightarrow numerical differentiation

Let us again consider the interpolating polynomial q(x) through (x_i, f_i) for $i = n - s, ..., \mathbf{n}$ (implicit!) on which we impose

numerical integration \leftrightarrow numerical differentiation

Let us again consider the interpolating polynomial q(x) through (x_i, f_i) for $i = n - s, ..., \mathbf{n}$ (implicit!) on which we impose

$$\dot{q}(x_n)=f(t_n,x_n)$$

to obtain x_n as the solution of this nonlinear system.

numerical integration \leftrightarrow numerical differentiation

Let us again consider the interpolating polynomial q(x) through (x_i, f_i) for $i = n - s, ..., \mathbf{n}$ (implicit!) on which we impose

$$\dot{q}(x_n)=f(t_n,x_n)$$

12/34

to obtain x_n as the solution of this nonlinear system.

All BDF methods are implicit, some examples:

▶
$$s = 1$$
: $x_n - x_{n-1} = h f_n$ (implicit Euler
▶ $s = 2$: $\frac{3}{2}x_n - 2x_{n-1} + \frac{1}{2}x_{n-2} = h f_n$
▶ ...

numerical integration \leftrightarrow numerical differentiation

Let us again consider the interpolating polynomial q(x) through (x_i, f_i) for $i = n - s, ..., \mathbf{n}$ (implicit!) on which we impose

$$\dot{q}(x_n)=f(t_n,x_n)$$

to obtain x_n as the solution of this nonlinear system.

All BDF methods are implicit, some examples:

•
$$s = 1$$
: $x_n - x_{n-1} = h f_n$ (implicit Euler
• $s = 2$: $\frac{3}{2}x_n - 2x_{n-1} + \frac{1}{2}x_{n-2} = h f_n$
• ...

NOTE: widely used for stiff systems !!

"... stiff equations are equations where certain implicit methods, in paricular BDF, perform better, usually tremendously better, than explicit ones."

- (Curtiss & Hirschfelder, 1952)

¹ Hairer and Wanner, Solving Ordinary Differential Equations II – Stiff and Differential-Algebraic Problems. 🚊 🛷 🔍

"... stiff equations are equations where certain implicit methods, in paricular BDF, perform better, usually tremendously better, than explicit ones."

- (Curtiss & Hirschfelder, 1952)

"... Around 1960, things became completely different and everyone became aware that the world was full of stiff problems."

- (G. Dahlquist, 1985)

¹Hairer and Wanner, Solving Ordinary Differential Equations II – Stiff and Differential-Algebraic Problems. 🚊 🗠 🔍

Let us consider the following simple one-dimensional system

$$\dot{x}(t) = -50(x(t) - \cos(t))$$

Let us consider the following simple one-dimensional system

$$\dot{x}(t) = -50(x(t) - \cos(t))$$

Let us consider the following simple one-dimensional system

$$\dot{x}(t) = -50(x(t) - \cos(t))$$

Let us consider the following simple one-dimensional system

$$\dot{x}(t) = -50(x(t) - \cos(t))$$

□ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ ⊇ のへで 14/34

Stiffness depends largely on

Stiffness depends largely on

- the eigenvalues $\lambda(t)$ of the Jacobian $\frac{\partial f}{\partial x}$
- but also system dimension, smoothness of the solution, ...

Stiffness depends largely on

- the eigenvalues $\lambda(t)$ of the Jacobian $\frac{\partial f}{\partial x}$
- ▶ but also system dimension, smoothness of the solution, ...

イロト 不得下 イヨト イヨト 二日

15/34

\Downarrow

- various mathematical definitions exist
- new concepts needed:
 A-stability, I-stability, A(α)-stability, L-stability, ...

Stiffness depends largely on

- the eigenvalues $\lambda(t)$ of the Jacobian $\frac{\partial f}{\partial x}$
- but also system dimension, smoothness of the solution, ...

\Downarrow

- various mathematical definitions exist
- new concepts needed:
 A-stability, I-stability, A(α)-stability, L-stability, ...

Main message: stiff systems require (semi-)implicit methods!

Linear multistep methods: software

Simulation for optimization:

▶ ...

► *SUNDIALS*: BDF and Adams in CVODE(S) + BDF in IDA(S)

イロト 不得下 イヨト イヨト 二日

16/34

- SolvIND: BDF in DAESOL-II + RK in RKFSWT
- ACADO Toolkit: BDF and RK

Classes of numerical methods:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Classes of numerical methods:

Runge-Kutta methods:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Runge-Kutta methods:

The simplest ERK method is explicit Euler

The simplest ERK method is explicit Euler

$$x_n = x_{n-1} + h f_{n-1}$$

which is consistent of order one (minimum).

The simplest ERK method is explicit Euler

$$x_n = x_{n-1} + h f_{n-1}$$

which is consistent of order one (minimum).

BUT: it is typically not a practical method... Why?

The simplest ERK method is explicit Euler

$$x_n = x_{n-1} + h f_{n-1}$$

which is consistent of order one (minimum).

BUT: it is typically not a practical method... Why? Higher order methods need much fewer steps for same accuracy!

The most popular is the following 4th order method

The most popular is the following 4th order method

$$k_{1} = f(t_{n-1}, x_{n-1})$$

$$k_{2} = f(t_{n-1} + \frac{h}{2}, x_{n-1} + \frac{h}{2}k_{1})$$

$$k_{3} = f(t_{n-1} + \frac{h}{2}, x_{n-1} + \frac{h}{2}k_{2})$$

$$k_{4} = f(t_{n-1} + h, x_{n-1} + h k_{3})$$

$$x_{n} = x_{n-1} + \frac{h}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The most popular is the following 4th order method

$$k_{1} = f(t_{n-1}, x_{n-1})$$

$$k_{2} = f(t_{n-1} + \frac{h}{2}, x_{n-1} + \frac{h}{2}k_{1})$$

$$k_{3} = f(t_{n-1} + \frac{h}{2}, x_{n-1} + \frac{h}{2}k_{2})$$

$$k_{4} = f(t_{n-1} + h, x_{n-1} + hk_{3})$$

$$x_{n} = x_{n-1} + \frac{h}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

20/34

The RK4 method

$$k_{1} = f(t_{n-1}, x_{n-1})$$

$$k_{2} = f(t_{n-1} + \frac{h}{2}, x_{n-1} + \frac{h}{2}k_{1})$$

$$k_{3} = f(t_{n-1} + \frac{h}{2}, x_{n-1} + \frac{h}{2}k_{2})$$

$$k_{4} = f(t_{n-1} + h, x_{n-1} + h k_{3})$$

$$x_{n} = x_{n-1} + \frac{h}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

So a general s-stage ERK method

$$k_{1} = f(t_{n-1}, x_{n-1})$$

$$k_{2} = f(t_{n-1} + c_{2} h, x_{n-1} + a_{21} h k_{1})$$

$$k_{3} = f(t_{n-1} + c_{3} h, x_{n-1} + a_{31} h k_{1} + a_{32} h k_{2})$$

$$\vdots$$

$$k_{s} = f(t_{n-1} + c_{s} h, x_{n-1} + a_{s1} h k_{1} + a_{s2} h k_{2} + \dots + a_{s,s-1} h k_{s-1})$$

$$x_{n} = x_{n-1} + h \sum_{i=1}^{s} b_{i} k_{i}$$

So a general s-stage ERK method

$$\begin{split} k_1 &= f(t_{n-1}, x_{n-1}) \\ k_2 &= f(t_{n-1} + c_2 h, x_{n-1} + a_{21} h k_1) \\ k_3 &= f(t_{n-1} + c_3 h, x_{n-1} + a_{31} h k_1 + a_{32} h k_2) \\ \vdots \\ k_s &= f(t_{n-1} + c_s h, x_{n-1} + a_{s1} h k_1 + a_{s2} h k_2 + \ldots + a_{s,s-1} h k_{s-1}) \\ k_s &= f(t_{n-1} + c_s h, x_{n-1} + a_{s1} h k_1 + a_{s2} h k_2 + \ldots + a_{s,s-1} h k_{s-1}) \\ x_n &= x_{n-1} + h \sum_{i=1}^{s} b_i k_i \end{split}$$

<ロ > < 回 > < 回 > < 目 > < 目 > < 目 > 目 の Q (~ 21/34

So a general s-stage ERK method

$$\begin{aligned} &k_1 = f(t_{n-1}, x_{n-1}) \\ &k_2 = f(t_{n-1} + c_2 h, x_{n-1} + a_{21} h k_1) \\ &k_3 = f(t_{n-1} + c_3 h, x_{n-1} + a_{31} h k_1 + a_{32} h k_2) \\ &\vdots \\ &k_s = f(t_{n-1} + c_s h, x_{n-1} + a_{s1} h k_1 + a_{s2} h k_2 + \ldots + a_{s,s-1} h k_{s-1}) \\ &k_s = r_{n-1} + h \sum_{i=1}^{s} b_i k_i \end{aligned}$$

NOTE: each Runge-Kutta method is defined by its Butcher table! other examples are e.g. the methods of Runge and Heun, ...

Typically:

no constant step size but suitable error control

Typically:

no constant step size but suitable error control based on a local error estimate:

$$e_i \approx \|x(t_i) - x(t_i; t_{i-1}, x(t_{i-1}))\|$$

Example:

Euler: $x_n = x_{n-1} + h f_{n-1}$

Example:

Euler: $x_n = x_{n-1} + h f_{n-1}$

Let us create a reference solution using 2 steps with h/2:

$$x_{n-1/2} = x_{n-1} + \frac{h}{2} f_{n-1}$$
$$\tilde{x}_n = x_{n-1/2} + \frac{h}{2} f_{n-1/2}$$
Intermezzo: Step size control

Example:

Euler: $x_n = x_{n-1} + h f_{n-1}$

Let us create a reference solution using 2 steps with h/2:

$$x_{n-1/2} = x_{n-1} + \frac{h}{2} f_{n-1}$$
$$\tilde{x}_n = x_{n-1/2} + \frac{h}{2} f_{n-1/2}$$

23 / 34

 $e_n = \tilde{x}_n - x_n \implies \text{accept/reject}$ and update the step size: $h_n = 0.9 h_{n-1} \sqrt[p+1]{\frac{TOL}{E}}$

Intermezzo: Step size control

Example:

Euler: $x_n = x_{n-1} + h f_{n-1}$

Let us create a reference solution using 2 steps with h/2:

$$\begin{aligned} x_{n-1/2} &= x_{n-1} + \frac{h}{2} f_{n-1} \\ \tilde{x}_n &= x_{n-1/2} + \frac{h}{2} f_{n-1/2} \end{aligned}$$

 $e_n = \tilde{x}_n - x_n \implies \text{accept/reject}$ and update the step size: $h_n = 0.9 h_{n-1} \sqrt[p+1]{\frac{TOL}{E}}$

Embedded methods: Fehlberg (e.g. RKF45), Dormand-Prince, ...

Overview

Runge-Kutta methods:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Overview

Runge-Kutta methods:

IRK as the natural generalization from ERK methods:

IRK as the natural generalization from ERK methods:

IRK as the natural generalization from ERK methods:

$$k_{1} = f\left(t_{n-1} + c_{1} h, x_{n-1} + h\sum_{j=1}^{s} a_{1j} k_{j}\right)$$

$$\vdots$$

$$k_{s} = f\left(t_{n-1} + c_{s} h, x_{n-1} + h\sum_{j=1}^{s} a_{sj} k_{j}\right)$$

$$k_{s} = x_{n-1} + h\sum_{i=1}^{s} b_{i} k_{i}$$

$$C_{1} \mid a_{11} \cdots a_{1s} \\
C_{2} \mid a_{21} \cdots a_{2s} \\
\vdots \quad \vdots \\
C_{s} \mid a_{s1} \cdots a_{ss} \\
 b_{1} \cdots b_{s}$$

IRK as the natural generalization from ERK methods:

26 / 34

pro: nice properties (order, stability)

IRK as the natural generalization from ERK methods:

$$\begin{aligned} \mathbf{k}_{1} &= f\left(t_{n-1} + c_{1} h, x_{n-1} + h\sum_{j=1}^{s} a_{1j} \mathbf{k}_{j}\right) \\ &\vdots \\ \mathbf{k}_{s} &= f\left(t_{n-1} + c_{s} h, x_{n-1} + h\sum_{j=1}^{s} a_{sj} \mathbf{k}_{j}\right) \\ &x_{n} &= x_{n-1} + h\sum_{i=1}^{s} b_{i} k_{i} \end{aligned}$$

26/34

pro: nice properties (order, stability)
con: large nonlinear system

Explicit ODE system:

 $\dot{x}(t) = f(t, x(t))$ $k_{1} = f\left(t_{n-1} + c_{1}h, x_{n-1} + h\sum_{j=1}^{s}a_{1j}k_{j}\right)$ \vdots $k_{s} = f\left(t_{n-1} + c_{s}h, x_{n-1} + h\sum_{j=1}^{s}a_{sj}k_{j}\right)$ $x_{n} = x_{n-1} + h\sum_{i=1}^{s}b_{i}k_{i}$

Explicit ODE system:

$$introduct index 1: Implicit ODE/DAE (index 1):$$

$$\dot{x}(t) = f(t, x(t)) \qquad 0 = f(t, \dot{x}(t), x(t), z(t))$$

$$k_{1} = f\left(t_{n-1} + c_{1}h, x_{n-1} + h\sum_{j=1}^{s} a_{1j}k_{j}\right) \qquad 0 = f\left(t_{n-1} + c_{1}h, k_{1}, x_{n-1} + h\sum_{j=1}^{s} a_{1j}k_{j}, Z_{1}\right)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ k_{s} = f\left(t_{n-1} + c_{s}h, x_{n-1} + h\sum_{j=1}^{s} a_{sj}k_{j}\right) \qquad 0 = f\left(t_{n-1} + c_{s}h, k_{s}, x_{n-1} + h\sum_{j=1}^{s} a_{sj}k_{j}, Z_{s}\right)$$

$$x_{n} = x_{n-1} + h\sum_{i=1}^{s} b_{i}k_{i} \qquad x_{n} = x_{n-1} + h\sum_{i=1}^{s} b_{i}k_{i}$$

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ つ へ で 27 / 34

Explicit ODE system:

$$introduct index 1: Implicit ODE/DAE (index 1):$$

$$\dot{x}(t) = f(t, x(t)) \qquad 0 = f(t, \dot{x}(t), x(t), z(t))$$

$$\mathbf{k}_{1} = f\left(t_{n-1} + c_{1}h, x_{n-1} + h\sum_{j=1}^{s} a_{1j}\mathbf{k}_{j}\right) \qquad 0 = f\left(t_{n-1} + c_{1}h, \mathbf{k}_{1}, x_{n-1} + h\sum_{j=1}^{s} a_{1j}\mathbf{k}_{j}, \mathbf{Z}_{1}\right)$$

$$\vdots \qquad \vdots$$

$$\mathbf{k}_{s} = f\left(t_{n-1} + c_{s}h, x_{n-1} + h\sum_{j=1}^{s} a_{sj}\mathbf{k}_{j}\right) \qquad 0 = f\left(t_{n-1} + c_{s}h, \mathbf{k}_{s}, x_{n-1} + h\sum_{j=1}^{s} a_{sj}\mathbf{k}_{j}, \mathbf{Z}_{s}\right)$$

$$x_{n} = x_{n-1} + h\sum_{i=1}^{s} b_{i}k_{i} \qquad x_{n} = x_{n-1} + h\sum_{i=1}^{s} b_{i}k_{i}$$

<ロ > < 部 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > 27 / 34

Important family of IRK methods:

- distinct c_i's (nonconfluent)
- polynomial q(t) of degree s

Important family of IRK methods:

continuous approximation

$$\Rightarrow x_n = q(t_{n-1}+h)$$

Important family of IRK methods:

$$\dot{q}(t_{n-1}+c_sh)=f(t_{n-1}+c_sh,q(t_{n-1}+c_sh))$$

continuous approximation

$$\Rightarrow x_n = q(t_{n-1} + h)$$

NOTE: this is very popular in direct optimal control!

How to implement a collocation method?

$$\begin{aligned} q(t_{n-1}) &= x_{n-1} \\ \dot{q}(t_{n-1}+c_1h) &= f(t_{n-1}+c_1h, q(t_{n-1}+c_1h)) \\ &\vdots \\ \dot{q}(t_{n-1}+c_sh) &= f(t_{n-1}+c_sh, q(t_{n-1}+c_sh)) \end{aligned}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

29/34

How to implement a collocation method?

$$\begin{aligned} q(t_{n-1}) &= x_{n-1} \\ \dot{q}(t_{n-1}+c_1h) &= f(t_{n-1}+c_1h,q(t_{n-1}+c_1h)) \\ &\vdots \\ \dot{q}(t_{n-1}+c_5h) &= f(t_{n-1}+c_5h,q(t_{n-1}+c_5h)) \end{aligned}$$

This is nothing else than ...

$$k_{1} = f(t_{n-1} + c_{1} h, x_{n-1} + h \sum_{j=1}^{s} a_{1j} k_{j})$$

$$\vdots$$

$$k_{s} = f(t_{n-1} + c_{s} h, x_{n-1} + h \sum_{j=1}^{s} a_{sj} k_{j})$$

$$x_{n} = x_{n-1} + h \sum_{i=1}^{s} b_{i} k_{i}$$

where the Butcher table is defined by the collocation nodes c_i .

Example: The Gauss methods

Example: The Gauss methods

- roots of Legendre polynomials
- A-stable
- optimal order (p = 2s)

Example: The Gauss methods

- roots of Legendre polynomials
- A-stable
- optimal order (p = 2s)

$$c_{1} = \frac{1}{2}, \qquad s = 1, \quad p = 2,$$

$$c_{1} = \frac{1}{2} - \frac{\sqrt{3}}{6}, c_{2} = \frac{1}{2} + \frac{\sqrt{3}}{6}, \qquad s = 2, \quad p = 4,$$

$$c_{1} = \frac{1}{2} - \frac{\sqrt{15}}{10}, c_{2} = \frac{1}{2}, c_{3} = \frac{1}{2} + \frac{\sqrt{15}}{10}, \quad s = 3, \quad p = 6.$$

Example: The Gauss methods

- roots of Legendre polynomials
- A-stable
- optimal order
 (p = 2s)

At least as popular: Radau IIA methods (p = 2s - 1, stiffly accurate, L-stable)

Overview

Runge-Kutta methods:

Overview

Runge-Kutta methods:

・ロ ・ ・ 一部 ・ く 言 ト く 言 ト こ の へ (や 31 / 34

Semi-implicit Runge-Kutta methods

The matrix A is not strictly lower triangular ...

Semi-implicit Runge-Kutta methods

The matrix A is not strictly lower triangular ... but there is a specific structure!

- Diagonal IRK (DIRK)
- Singly DIRK (SDIRK)
- Explicit SDIRK (ESDIRK)

ERK

DIRK

SDIRK

ESDIRK

IRK

High order schemes preferable for smooth problems

- High order schemes preferable for smooth problems
- Explicit methods are good for non-stiff systems

Summary

- High order schemes preferable for smooth problems
- Explicit methods are good for non-stiff systems
- For stiff and/or implicit models, the use of implicit methods (BDF, IRK, ...) is highly recommended

References

- E. Hairer, S.P. Nørsett, and G. Wanner: Solving Ordinary Differential Equations I, Springer Series in Computational Mathematics, Berlin, 1993.
- E. Hairer and G. Wanner: Solving Ordinary Differential Equations II Stiff and Differential-Algebraic Problems, Springer, Berlin Heidelberg, 1996.
- K.E. Brenan, S.L. Campbell, and L.R. Petzold: The Numerical Solution of Initial Value Problems in Differential-Algebraic Equations, SIAM Classics Series, 1996.
- U.M. Ascher and L.R. Petzold: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, 1998.