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Introduction: IVP

THEOREM [Picard 1890, Lindelöf 1894]:

Initial value problem in ODE

ẋ(t) = f (t, x(t), u(t), p), t ∈ [t0, tend],

x(t0) = x0

I with given initial state x0, parameters p, and controls u(t),
I and Lipschitz continuous f (t, x(t), u(t), p)

has unique solution

x(t), t ∈ [t0, tend]
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Introduction: numerical simulation

Aim of numerical simulation:

Compute x(t), t ∈ [t0, tend] which approximately satisfies

ẋ(t) = f (t, x(t), u(t), p), t ∈ [t0, tend],

x(t0) = x0,

and z(t) in case of index-1 DAE

ẋ(t) = f (t, x(t), z(t), u(t), p),

0 = g(t, x(t), z(t), u(t), p), t ∈ [t0, tend],

x(t0) = x0

NOTE: interested in values at discrete times ti ∈ [t0, tend],
especially t = tend
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Introduction: numerical simulation

Let us define the exact trajectory x(t), t ∈ [t0, tend] and a set of
discrete time steps t0, t1, . . .

Local error:

e(ti ) = x(ti )− x(ti ; ti−1, x(ti−1))

Global error or “transported error”:

E (ti ) = x(ti )− x(ti ; t0, x0)
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Introduction: important properties

Let us define the stepsize h such that ti+1 = ti + h

convergence: A method is convergent when its values
converge to the exact solution for h→ 0.

order: The method has order p if the local error

lim
h→0

e(ti ) = O(hp+1)

NOTE: consistency when p > 0 (necessary for convergence)

stability: ‘damping’ of errors, see stiffness
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Overview

Classes of numerical methods:

General Linear Methods

Multistep Single-step

Linear Multistep Runge-Kutta

explicit implicit implicitexplicit

and others ...

Linear Multistep
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Multistep methods

Each method takes a step forward in time to find the next solution
point, but this can be based either:

I on the previous point and its derivative, often with
intermediate steps (see Runge-Kutta)

I on a certain amount of previous points and their derivatives

⇒ good starting procedure needed!
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Linear multistep methods

Let us consider the simplified system ẋ(t) = f (t, x(t)).

A s-step LM method then uses xi , fi = f (ti , xi ) for
i = n − s, . . . , n − 1 to compute xn ≈ x(tn):

xn + as−1xn−1 + . . . + a0xn−s =

h (bs fn + bs−1fn−1 + . . . + b0fn−s)

explicit (bs = 0) ↔ implicit (bs 6= 0)

Three main families:

I Adams-Bashforth (explicit)

I Adams-Moulton (implicit)

I Backward differentiation formulas (BDF)
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Linear multistep methods: Adams

Let us consider the time step in integrated form

x(tn) = x(tn−1) +

∫ tn

tn−1

f (t, x(t))dt

in which Adams approximates f (t, x(t)) by the interpolating
polynomial through (xi , fi ) for i = n − s, . . . , n − 1.
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2 fn−1 −

1
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)
I . . .
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5
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12 fn−1 −
1
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NOTE: implicit methods include (xn, fn) ⇒ nonlinear system
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Linear multistep methods: BDF

numerical integration ↔ numerical differentiation

Let us again consider the interpolating polynomial q(x) through
(xi , fi ) for i = n − s, . . . ,n (implicit!) on which we impose

q̇(xn) = f (tn, xn)

to obtain xn as the solution of this nonlinear system.

All BDF methods are implicit, some examples:

I s = 1 : xn − xn−1 = h fn (implicit Euler)

I s = 2 : 3
2xn − 2xn−1 + 1

2xn−2 = h fn
I . . .

NOTE: widely used for stiff systems !!
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Intermezzo: stiffness1

“... stiff equations are equations where certain implicit
methods, in paricular BDF, perform better, usually
tremendously better, than explicit ones.”

- (Curtiss & Hirschfelder, 1952)

“... Around 1960, things became completely different and
everyone became aware that the world was full of stiff
problems.”

- (G. Dahlquist, 1985)

1Hairer and Wanner, Solving Ordinary Differential Equations II – Stiff and Differential-Algebraic Problems.
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Intermezzo: stiffness example

Let us consider the following simple one-dimensional system

ẋ(t) = −50(x(t)− cos(t))
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Intermezzo: stiffness

Stiffness depends largely on

I the eigenvalues λ(t) of the Jacobian ∂f
∂x

I but also system dimension, smoothness of the solution, . . .

⇓

I various mathematical definitions exist

I new concepts needed:
A-stability, I-stability, A(α)-stability, L-stability, . . .

Main message: stiff systems require (semi-)implicit methods!
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Linear multistep methods: software

Simulation for optimization:

I SUNDIALS: BDF and Adams in CVODE(S) + BDF in IDA(S)

I SolvIND: BDF in DAESOL-II + RK in RKFSWT

I ACADO Toolkit: BDF and RK

I . . .
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Overview

Classes of numerical methods:

General Linear Methods

Multistep Single-step

Linear Multistep Runge-Kutta

explicit implicit implicitexplicit

and others ...

Runge-Kutta
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Overview

Runge-Kutta methods:

Runge-Kutta

implicitexplicit

explicit
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Explicit Runge-Kutta (ERK) methods

The simplest ERK method is explicit Euler

xn = xn−1 + h fn−1

which is consistent of order one (minimum).

BUT: it is typically not a practical method... Why?
Higher order methods need much fewer steps for same accuracy!
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Explicit Runge-Kutta (ERK) methods

The most popular is the following 4th order method
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Explicit Runge-Kutta (ERK) methods

The RK4 method
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Explicit Runge-Kutta (ERK) methods

So a general s-stage ERK method

k1 = f (tn−1, xn−1)

k2 = f (tn−1 + c2 h, xn−1 + a21 h k1)

k3 = f (tn−1 + c3 h, xn−1 + a31 h k1 + a32 h k2)

...

ks = f (tn−1 + cs h, xn−1 + as1 h k1 + as2 h k2 + . . .+ as,s−1 h ks−1)

xn = xn−1 + h
s∑

i=1

bi ki
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b1 b2 · · · bs
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Explicit Runge-Kutta (ERK) methods

So a general s-stage ERK method

k1 = f (tn−1, xn−1)

k2 = f (tn−1 + c2 h, xn−1 + a21 h k1)

k3 = f (tn−1 + c3 h, xn−1 + a31 h k1 + a32 h k2)

.

.

.

ks = f (tn−1 + cs h, xn−1 + as1 h k1 + as2 h k2 + . . . + as,s−1 h ks−1)

xn = xn−1 + h
s∑

i=1

bi ki

0
c2 a21
c3 a31 a32
.
.
.

.

.

.
. . .

cs as1 as2 · · ·
b1 b2 · · · bs

NOTE: each Runge-Kutta method is defined by its Butcher table!
other examples are e.g. the methods of Runge and Heun, . . .
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Intermezzo: Step size control

Typically:

no constant step size but suitable error control

based on a local error estimate:

ei ≈ ‖x(ti )− x(ti ; ti−1, x(ti−1))‖
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Intermezzo: Step size control

Example:

Euler: xn = xn−1 + h fn−1

Let us create a reference solution using 2 steps with h/2:

xn−1/2 = xn−1 +
h

2
fn−1

x̃n = xn−1/2 +
h

2
fn−1/2

en = x̃n − xn ⇒ accept/reject

and update the step size: hn = 0.9 hn−1
p+1

√
TOL

E

Embedded methods: Fehlberg (e.g. RKF45), Dormand-Prince, . . .
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Overview

Runge-Kutta methods:

Runge-Kutta

implicitexplicit

implicit
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Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

0
c2 a21
c3 a31 a32
...

...
. . .

cs as1 as2 · · ·
b1 b2 · · · bs

⇒

c1 a11 · · · a1s

c2 a21 · · · a2s

...
...

...
cs as1 · · · ass

b1 · · · bs

25 / 34



Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

0
c2 a21
c3 a31 a32
...

...
. . .

cs as1 as2 · · ·
b1 b2 · · · bs

⇒

c1 a11 · · · a1s

c2 a21 · · · a2s

...
...

...
cs as1 · · · ass

b1 · · · bs

25 / 34



Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

k1 = f

tn−1 + c1 h, xn−1 + h
s∑

j=1

a1j kj


.
.
.

ks = f

tn−1 + cs h, xn−1 + h
s∑

j=1

asj kj


xn = xn−1 + h

s∑
i=1

bi ki

c1 a11 · · · a1s

c2 a21 · · · a2s

...
...

...
cs as1 · · · ass

b1 · · · bs

pro: nice properties (order, stability)

con: large nonlinear system
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Implicit Runge-Kutta (IRK) methods

Explicit ODE system:

ẋ(t) = f (t, x(t))

k1 = f

tn−1 + c1 h, xn−1 + h
s∑

j=1

a1j kj


.
.
.

ks = f

tn−1 + cs h, xn−1 + h
s∑

j=1

asj kj


xn = xn−1 + h

s∑
i=1

bi ki

Implicit ODE/DAE (index 1):

0 = f (t, ẋ(t), x(t), z(t))

0 = f

tn−1 + c1 h, k1, xn−1 + h
s∑

j=1

a1j kj , Z1


.
.
.

0 = f

tn−1 + cs h, ks , xn−1 + h
s∑

j=1

asj kj , Zs


xn = xn−1 + h

s∑
i=1

bi ki
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0 = f (t, ẋ(t), x(t), z(t))

0 = f

tn−1 + c1 h, k1, xn−1 + h
s∑

j=1

a1j kj, Z1


.
.
.

0 = f

tn−1 + cs h, ks, xn−1 + h
s∑

j=1

asj kj, Zs


xn = xn−1 + h

s∑
i=1

bi ki

27 / 34



Collocation methods

Important family of IRK methods:

I distinct ci ’s (nonconfluent)

I polynomial q(t) of degree s

q(tn−1) = xn−1

q̇(tn−1 + c1h) = f (tn−1 + c1h, q(tn−1 + c1h))

...

q̇(tn−1 + csh) = f (tn−1 + csh, q(tn−1 + csh))

continuous approximation

⇒ xn = q(tn−1 + h)

NOTE: this is very popular
in direct optimal control!
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Collocation methods

How to implement a collocation method?

q(tn−1) = xn−1

q̇(tn−1 + c1h) = f (tn−1 + c1h, q(tn−1 + c1h))

.

.

.

q̇(tn−1 + cs h) = f (tn−1 + cs h, q(tn−1 + cs h))
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Collocation methods

How to implement a collocation method?

q(tn−1) = xn−1

q̇(tn−1 + c1h) = f (tn−1 + c1h, q(tn−1 + c1h))

.

.

.

q̇(tn−1 + cs h) = f (tn−1 + cs h, q(tn−1 + cs h))

This is nothing else than . . .

k1 = f (tn−1 + c1 h, xn−1 + h
s∑

j=1

a1j kj )

.

.

.

ks = f (tn−1 + cs h, xn−1 + h
s∑

j=1

asj kj )

xn = xn−1 + h
s∑

i=1

bi ki

where the Butcher table is defined by the collocation nodes ci .
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Collocation methods

Example: The Gauss methods

I roots of Legendre
polynomials

I A-stable

I optimal order
(p = 2s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

s = 1,  p = 2

s = 2,  p = 4

s = 3,  p = 6
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c1 =
1

2
, s = 1, p = 2,

c1 =
1

2
−
√

3

6
, c2 =

1

2
+

√
3

6
, s = 2, p = 4,

c1 =
1

2
−
√

15

10
, c2 =

1

2
, c3 =

1

2
+

√
15

10
, s = 3, p = 6.
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Collocation methods

Example: The Gauss methods

I roots of Legendre
polynomials

I A-stable

I optimal order
(p = 2s)
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At least as popular:
Radau IIA methods (p = 2s − 1, stiffly accurate, L-stable)
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Overview

Runge-Kutta methods:

Runge-Kutta

implicitexplicit
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Runge-Kutta methods:
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explicit implicitsemi-implicit
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Semi-implicit Runge-Kutta methods

The matrix A is not strictly lower triangular . . .

but there is a specific structure!

I Diagonal IRK (DIRK)

I Singly DIRK (SDIRK)

I Explicit SDIRK (ESDIRK)
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Summary

I High order schemes preferable for smooth problems

I Explicit methods are good for non-stiff systems

I For stiff and/or implicit models, the use of implicit methods
(BDF, IRK, ...) is highly recommended
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