

BURG

REIL

Control implementations on the HIGHWIND carousel

Ernesto Denicia

HIGHWIND Scientific Advisory Board (SAB) Meeting Department of Microsystems Engineering - IMTEK University of Freiburg, Germany

Agenda: Treating in this talk

- System identification of the carousel
- Model
- Parameter estimation

- State estimator simulations and implementation

- Discrete Linear Quadratic Estimator (DLQE)
- Disturbance state augmented DLQE (steady state Kalman Filter)

- Control simulations and implementation

- Discrete Linear Quadratic Regulator (DLQR)
- Disturbance state augmented DLQR
- Discrete Linear Quadratic Gaussian Control (DLQG)

Remarks on this talk

Colors used:

- Real sensor measurements
- Numerical simulations
- References or setpoints
- Estimate simulations (DLQE, augmented DLQE, DLQG)
- Real estimator output (Implemented estimators)
- Experimental control signal (DLQR, augmented DLQR, DLQG)

For angle measurement, radians are prefered to degrees

1.0 System identification of the carousel: Actual model

Actual model considers:

- Kinetic energy:
 - > Arm inertia
 - > Ball velocity
 - LAS inertia
 - LAS Attachment inertia (tether+ball)
- Potential energy
 - Ball
- Generalized torques
 - > Air friction
 - > LAS α friction
 - > LAS β friction

1.2 Physical model detailed

Advantages:

- Differentiate between motor and arm state
- Six first states already being measured and reported

Disadvantages

- Coupling between motor speed and arm speed difficult to measure (rubber band)
- Input: Motor speed setpoint. Motor speed already modified by lower level controllers, algorithm difficult to estimate

2.1 Idea: $\dot{\delta}_{motor_sp} \rightarrow \dot{\delta}_{arm}$ as second order system

3.1 LAS Identification

Multi-steps experiment (avoidance of low speeds)

3.2 LAS Identification - Simulation

3.3 LAS Identification – Acceptable working range

12/06/2015

3.4 LAS model parameters

Description	Symbol	Conf. Int.	Covariance matrix
Air-Ball friction	μ_{air}	0.0069 kg/m	
Elevation LAS friction	$\mu_{lpha, LAS}$	1.4351 Nms/rad	1.0e-03 * 0.000002 -0.000002 -0.000011 -0.000006 -0.000002 0.062871 0.009529 -0.009383 -0.000011 0.009529 0.176314 -0.007819 -0.000006 -0.009383 -0.007819 0.007186
Azimuth LAS friction	$\mu_{eta,LAS}$	0.6122 Nms/rad	
Constant attached inertia	l _{attached_L} AS	0.2853 kg/m ²	

3.5 Model adaptation

BURG

4.1 Discrete Linear Quadratic Estimator (DLQE) design

$$\begin{split} \min_{x_0...x_k} \left\| x_0 - \hat{x}_0 \right\|_{P_0}^2 + \left\| x_k - \hat{x}_k \right\|_{W}^2 + \left\| y_k - \hat{y}_k \right\|_{V}^2 \\ x_{k+1} &= \mathbf{A}\mathbf{x}_k + \mathbf{B}\mathbf{u}_k + \mathbf{G}\mathbf{w}_k \\ s.t. \qquad \mathbf{y}_k &= \mathbf{C}\mathbf{x}_k + \mathbf{D}\mathbf{u}_k + \mathbf{v}_k \end{split}$$

- Linearization at $x_{ss} = [1.5878 0.8802 0.0687 \ 0 \ 0 \ 1.5878]$
- Discretization with $\Delta_t = 100ms$ and initial estimate $\overline{x_0} = x_{ss}$

$$x = \begin{bmatrix} \dot{\delta}_{arm} \\ \ddot{\delta}_{arm} \\ \alpha \\ \beta \\ \dot{\alpha} \\ \dot{\beta} \\ \dot{\delta}_{motor_sp} \end{bmatrix} Q_E = \begin{bmatrix} w_n^2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & w_n^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & w_o^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & w_n^2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & w_n^{20} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} R_E = \begin{bmatrix} v_n^2 & 0 \\ 0 & v_n^2 \end{bmatrix} \quad G = I_{n_x \times n_x} \\ v = 0.01 \\ w_n = 0.001 \\ w_o = 1 \times 10^{-6}$$

4.2 DLQE Simulation

estimator_simulation()

4.3 DLQE: Experimental Results

- 15 -

kalman1()

4.4 Disturbance state augmented DLQE design

Staying at the linearization setpoint is unlikely for such a setup (tether length varied constantly)

 Mismodelling in elevation angle corrected by the use of an added diturbance state

$$\alpha = \ddot{\dots} + S_p$$

$$\dot{Sp} = -\frac{S_p}{\tau} + w_{n_s} \text{ with } w_{n_s} \sim N(0, \Sigma(\cdot))$$

• Design characteristics: $\tau = 100$ and $w_{ns} = 0.001$

4.5 Model changes due to augmentation

4.6 Augmented DLQE: initial tuning

- Linearization at $x_{ss} = [1.6196 0.8802 0.0696 0 0 1.6196]$
- Discretization with $\Delta_t = 20ms$ and initial estimate $\overline{x_0} = x_{ss}$

4.7 DLQE Simulation

*Experiment and fine tuning to be seen during the visit

estimator_simulation()

5.1Discrete Linear Quadratic Regulator (DLQR) design

$$\min_{x_0...x_N...u_0...u_{N-1}} \|x_N\|_{P_N}^2 + \|x_k\|_Q^2 + \|u_k\|_R^2$$

$$x_{k+1} = Ax_k + Bu_k$$
s.t.
$$x_o - \overline{x}_o = 0$$

- Linearization at $x_{ss} = [1.5878 0.8802 0.0687 0 0 1.5878]$
- Discretization with $\Delta_t = 100ms$ and initial estimate $\overline{x_0} = x_{ss}$

$$x = \begin{bmatrix} \delta_{arm} \\ \ddot{\delta}_{arm} \\ \alpha \\ \beta \\ \dot{\alpha} \\ \dot{\beta} \\ \dot{\delta}_{motor_sp} \end{bmatrix} \qquad Q = \begin{bmatrix} q_0^2 & 0 & 0 & 0 & 0 & 0 \\ 0 & q_0^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 8^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & q_0^2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & q_0^2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & q_0 \end{bmatrix} \qquad R = [2^2]$$

$$P_N = [0]$$

5.2 Discrete Linear Quadratic Regulator (DLQR) simulation

dlqr/carousel_dynamics()

5.3 DLQR experimental results

MAMAMAMAN

Simulation Reference Real experiment Stimator

First attempt

5.4 Disturbance state augmented DLQR design

- Linearization at $x_{ss} = [1.6196 0.8802 0.0696 0 0 1.6196]$
- Discretization with $\Delta_t = 20ms$

п.

÷

•

$$x = \begin{bmatrix} \delta_{arm} \\ \ddot{\delta}_{arm} \\ \alpha \\ \beta \\ \dot{\alpha} \\ \dot{\beta} \\ \dot{\beta} \\ \dot{\delta}_{motor_sp} \\ s_p \end{bmatrix} \qquad Q = \begin{bmatrix} q_0^2 & 0 & 0 & 0 & 0 & 0 \\ 0 & q_0^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 10^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 7^2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 7^2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5^2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3^2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & q_0 \end{bmatrix} \qquad P_N = [0]$$

5.5 Disturbance state augmented DLQR simulation

*Experimental results to be seen during the visit

- 24 -

Thanks for your attention

