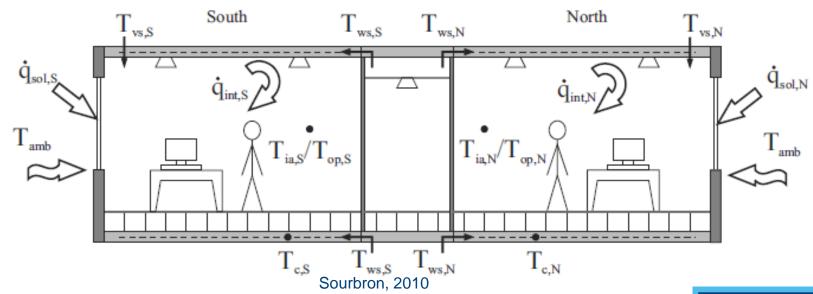


Tips and tricks for cost function of complex building optimal controllers

Damien Picard¹ Lieve Helsen¹

March 2015

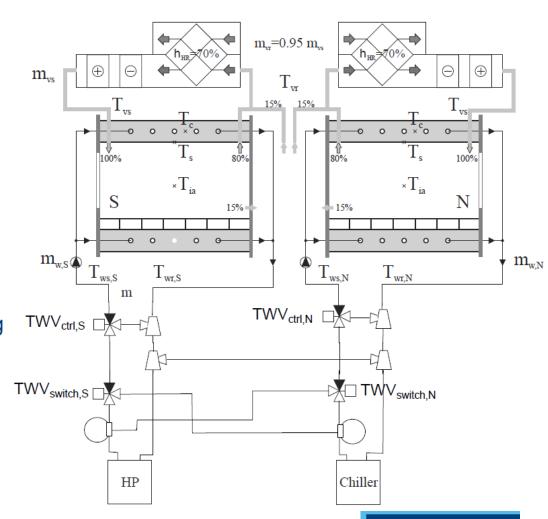


¹ KU Leuven, Department of Mechanical Engineering, Division of Applied Mechanics and Energy Conversion

Description of system

Building

- Three zones: north, south, corridor
- TABS
- VAV for north and south zone
- Internal gains
- Realistic parameters


Description of system

Ventilation

- VAV
 - heating coil fed by gas-boiler
 - cooling coil fed by LT-chiller
 - heat recovery with by-pass
- Hygienic mass flow rate
- No latent heat or CO2

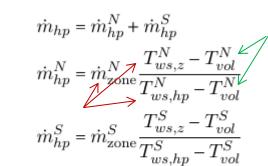
Heating system


- Air-coupled heat pump for heating
- High temperature chiller
- Variable speed pumps
- Three-way valves

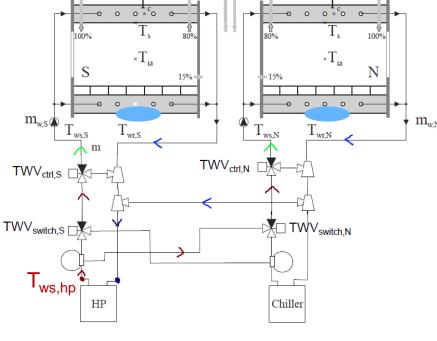
Description of system

Heat and cold production

- No dynamics
- Gas boiler (η = 0.95), LT-chiller (EER = 3)
- Heat pump and HT-chiller with variable COP / EER (based on Eurovent data)


TABS and heat pump

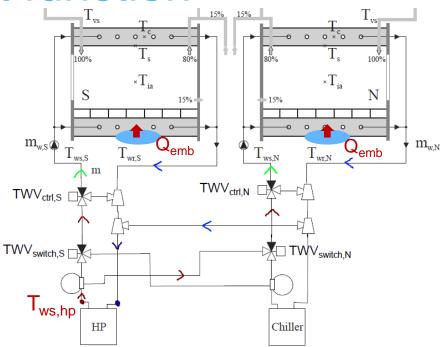
- Inputs
 - HP supply temperature T_{ws,hp}
 - $_{\circ}$ Zones supply temperature $T_{ws,z}$
 - Zones mass flow rate m_{zone}
- States
 - \circ Water in tabs $(T_{ws,hp})$


$$m_{vol}c_{p,w}\frac{\mathrm{d}T_{vol}^{N}}{\mathrm{d}t}=\dot{m}_{z}^{N}c_{p,w}\left(T_{ws,z}^{N}-T_{vol}^{N}\right)+G^{N}\left(T_{emb}^{N}-T_{vol}^{N}\right)$$

Cost function

$$P_{el,hp} = \frac{Q}{COP} = \frac{c_{p,w} \dot{m}_{hp} \left(T_{wr,hp} - T_{ws,hp} \right)}{-0.03 \left(T_{ws,hp} - \left(35 + 273.15 \right) \right) + 3.9}$$
 with

$$T_{wr,hp} = \frac{\dot{m}_{hp}^S}{\dot{m}_{hp}} T_{vol}^S + \frac{\dot{m}_{hp}^N}{\dot{m}_{hp}} T_{vol}^N$$



TABS and heat pump

- optimize Q_{emb} instead of m∆T → Q_{emb} ≈ Q_{hp}
- Use heating curve for T_{ws,hp} + modes
- Neglect dynamics of water (small time constant)
- Cost function

$$P_{el,hp} = \frac{Q_{emb}^{N} + Q_{emb}^{S}}{-0.03 \left(T_{ws,hp} - \left(35 + 273.15\right)\right) + 3.9}$$

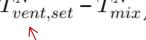
- + Linear cost function
- + Good approximation of production cost
- + For $Q_{emb} \rightarrow 0$, $\dot{m}_{zone} \rightarrow 0$
- Non-optimal mode, $T_{ws,hp}$ and \dot{m}_{zone}
- extra PID or static relationship: $\dot{m}_{zone} = \frac{Q_{emb}}{c_{p,w}} \left(T_{ws,hp} T_{emb} \frac{Q_{emb}}{G} \right)^{-1}$

Ventilation

Heat recovery (assuming constant ε for HEX):

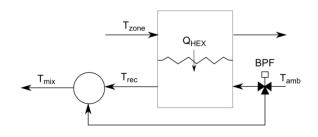
$$T_{rec} = T_{amb} + \epsilon (T_{zone} - T_{cone})$$

 $\epsilon_{\text{heatrecovery}}$ constant ε for HEX): $T_{sa} + T_{sa} + T_{sa} = T_{amb} + \epsilon (T_{zone} - T_{amb})$ $T_{wsh} T_{wrh} T_{wsc} T_{wrc}$


Mixed air using by-pass

$$V_{mix}\rho_{a}c_{p,a}\frac{\mathrm{d}T_{mix}^{N}}{\mathrm{d}t} = \dot{m}_{vent}^{N}c_{p,a}\left(-T_{mix}^{N} + \epsilon \ \mathrm{BPF}^{N}\left(T_{amb} - T_{zone}^{N}\right) + (1 - \epsilon)T_{amb} + \epsilon T_{zone}^{N}\right)$$

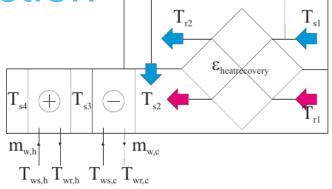
$$BPF^{N} = \frac{T_{vent,set}^{N} - \epsilon \left(T_{zone}^{N} - T_{amb}\right) - T_{amb}}{\epsilon \left(T_{amb} - T_{zone}^{N}\right)} \quad \text{s.t.} \quad 0 \le BPF^{N} \le 1$$

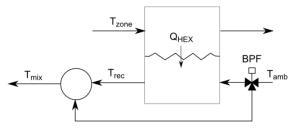

Additional power by heating or cooling coil

$$Q = \dot{m}_{vent}^{N} c_{p,a} \left(T_{vent,set}^{N} - T_{mix}^{N} \right)$$

Cost function

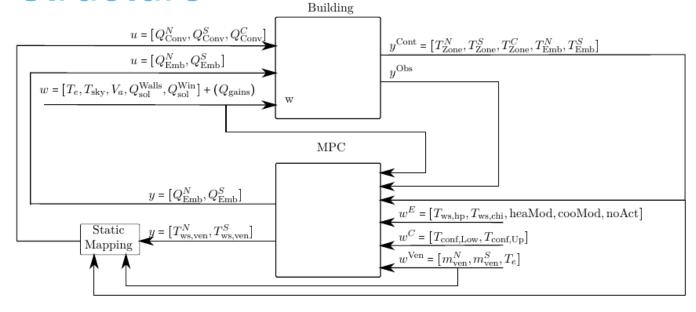
$$P_{Fuel} = \eta Q$$
 or $P_{el} = \frac{Q}{EER}$

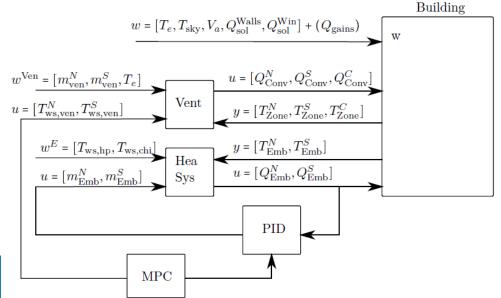

Ventilation


- Neglect air dynamics
- Use min and max function to guess BPF stand:

$$\begin{split} P_{\text{fuel,boi}}^{N} &= \max \left(\frac{1}{\eta} \ \dot{m}_{vent}^{N} c_{p,a} \left(T_{vent,set}^{N} - \max \left((1 - \epsilon) T_{amb} + \epsilon T_{zone}^{N} \ , \ T_{amb} \right) \right) \ , \ 0 \right) \\ &\text{s.t.} \ \frac{Q_{heaUnit,nom}}{\eta} \geq P_{\text{fuel,boi}}^{N} \end{split}$$

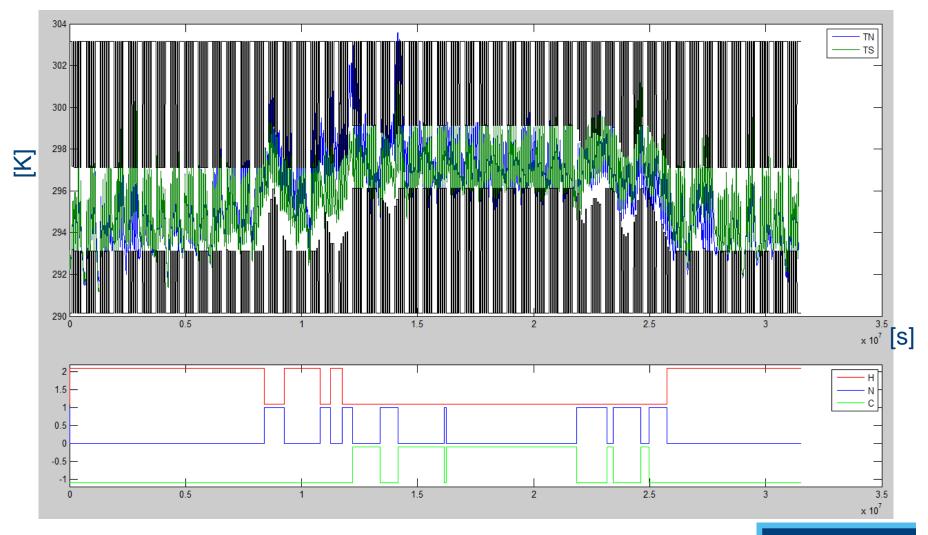
$$P_{\text{el,chi LT}}^{N} = \max \left(\frac{1}{EER} \ \dot{m}_{vent}^{N} c_{p,a} \left(\min \left((1 - \epsilon) T_{amb} + \epsilon T_{zone}^{N} \ , \ T_{amb} \right) - T_{vent,set}^{N} \right) \ , \ 0 \right)$$
s.t.
$$\frac{Q_{cooUnit,nom}}{EER} \ge P_{\text{el,chi LT}}^{N}$$


- → Non convex, but:
 - ∘ if heating, mostly $T_{amb} < T_{rec}$ → Use heat recovery
 - $_{\circ}$ if cooling, mostly $T_{amb} < T_{rec} \rightarrow$ Don't use heat recovery
- Cost function: $P_{fuel,boi} = \max\left(\frac{1}{\eta} \dot{m}_{vent} c_{p,a} \left(T_{vent,set} (1 \epsilon)T_{amb} \epsilon T_{zone}\right), 0\right)$ $P_{el,chi\ LT} = \max\left(\frac{1}{EER} \dot{m}_{vent} c_{p,a} \left(T_{amb} T_{vent,set}\right), 0\right)$
- Notice: if $0 < BPF < 1 \rightarrow P_{fuel} = P_{el} = 0$

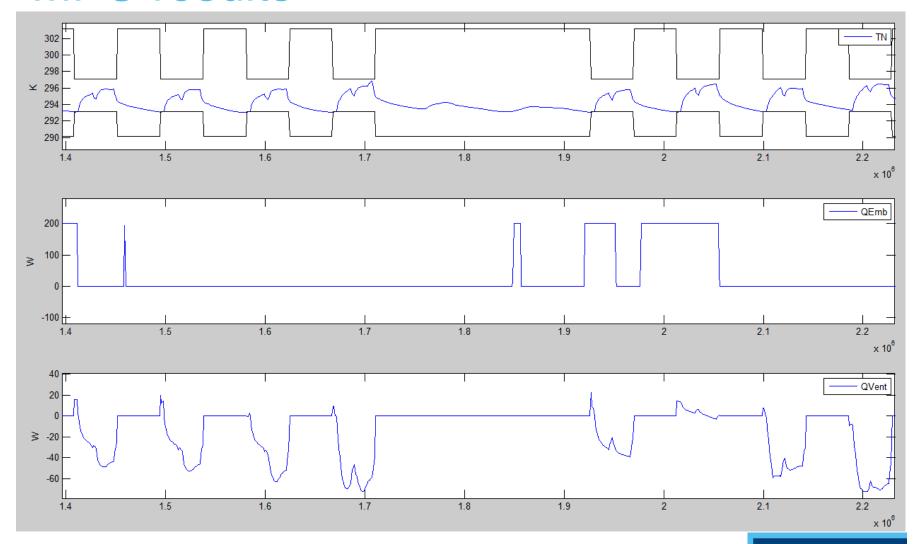


MPC structure

1)



2)


KU LEUVEN

MPC results

MPC results

Conclusion

- Strong non-linearities in HVAC
- Hybrid systems require more accurate cost function
- Good approximations based on physical insights for ventilation
- Hierarchical MPC
- Loss of optimality due to non-optimal \dot{m} , $T_{ws,hp}$, $T_{ws,chi}$, modes

Questions?

