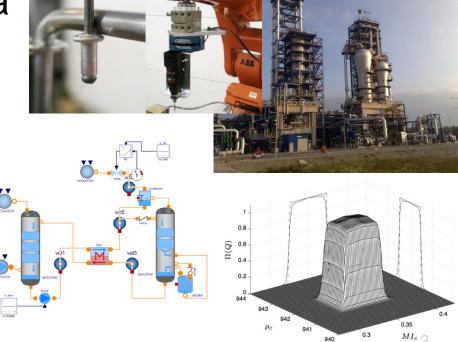
OPTIMIZATION TOOL CHAIN IN JMODELICA.ORG

Toivo Henningsson, Modelon


OUTLINE

- JModelica.org
- Using dynamic optimization
 - Problem formulation
 - Optimica
 - Python tool box
 - Example
- Solution algorithm collocation
- Application examples

THE JMODELICA.ORG OPEN SOURCE PROJECT

JModelica.org is an extensible Modelica-based open source platform for optimization, simulation and analysis of complex dynamic systems.

- Modeling with Modelica
- Simulation with FMI
- Optimization
- Analysis
- Visualization
- Industrial applications ³

DYNAMIC OPTIMIZATION

- **Simulation** means finding solution to $F(\dot{x}, x, y) = 0, x(0) = x_0$
 - Unique solution given initial conditions
 - Constraint $F(\dot{x}, x, y) = 0$ is the model
- Dynamic optimization adds inputs *u* and/or parameters *p*:

$$\min \int_{t_0}^{t_f} L(\dot{x}, x, y, \boldsymbol{u}, \boldsymbol{p}) dt$$

s.t. $F(\dot{x}, x, y, \boldsymbol{u}, \boldsymbol{p}) = 0, x(0) = x_0$

- Find *u*, *p* that minimize cost
- Possible to add extra constraints such as $x_L \le x \le x_u$

DYNAMIC OPTIMIZATION WITH JMODELICA.ORG

- Write models in Modelica
- Add optimization information in Optimica
 - A small extension of Modelica for optimization
 - Allows to add optimization information:
 - Cost function
 - Additional constraints
 - Parameters to optimize including time horizon length
 - Initial guesses
 - ...
- Work with optimization problems from Python

EXAMPLE

```
model Integrator
    Real x(start = 2, fixed = true);
    input Real u;
equation
    der(x) = -u;
end Integrator;
```

Let's add optimization information!

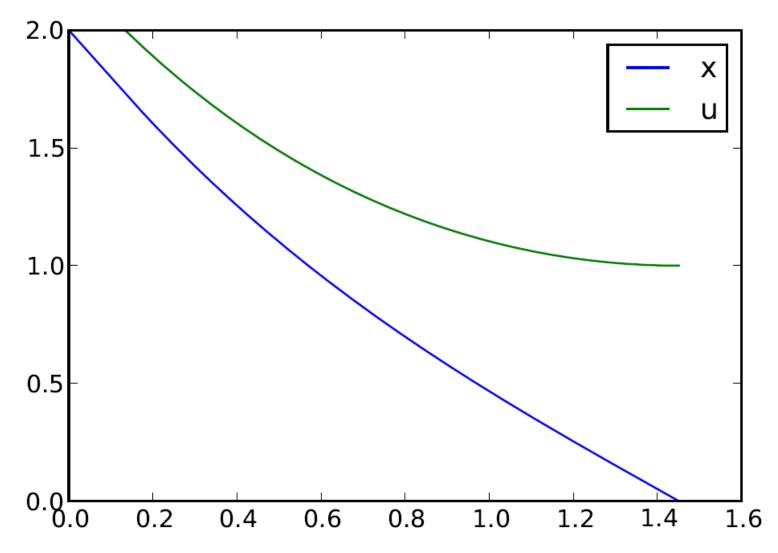
THE OPTIMICA EXTENSION

```
optimization Integrator (
    objective = finalTime,
    objectiveIntegrand = x^2 + u^2,
    startTime = 0,
    finalTime(free=true,min=0.5,max=2,initialGuess=1))
    Real x(start = 2, fixed = true);
    input Real u;
                         \min t_f + \int_0^{\iota_f} (x(t)^2 + u(t)^2) dt
equation
    der(x) = -u;
                          s.t. \dot{x} = -u, u \leq 2,
constraint
    u <= 2;
    x(finalTime) = 0;
                            x(0) = 2, x(t_f) = 0,
end Integrator;
                           \frac{1}{2} \le tf \le 2
               2015-03-18 © Modelon
                                                             7
```

OPTIMIZING IN PYTHON

from pyjmi import transfer_optimization_problem
import matplotlib.pyplot as plt

```
op = transfer_optimization_problem('Integrator',
                    'Example.mop')
reg = op_optimize()
```


```
res = op.optimize()
```

```
t = res['time']
x = res['x']
```

```
u = res['u']
```

```
plt.plot(t,x, t,u)
```

OPTIMIZATION RESULT

^{2015-03-18 ©} Modelon

PYTHON API FOR OPTIMIZATION

- Import
- Inspect
- Manipulate add/change cost, constraints...
- Solve
- Or extract equations and use in custom solver
 - Represented using CasADi

Additional options

- Initial and nominal trajectories, e.g. from simulation
- External data
- Warm starting reuse discretization, change parameters/data
- Blocking factors
- Delay constraints

SOLUTION ALGORITHM

Collocation

- Divide time horizon into elements
- Approximate system variables by low-order polynomials in each element ⇒ Solution given by a finite number of variables
- Use entire trajectory as unknown variable

Solution

- Collocation result: A very big nonlinear program (NLP)
- Solve, e.g. using lpopt \Rightarrow need C^2 continuous problem formulation

THERMODYNAMIC APPLICATIONS

Optimization projects with JModelica.org

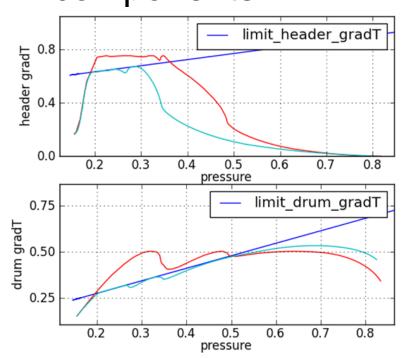
- Model predictive control of CO₂ post-combustion capture plants
- Grade change of polyethylene production
- Production planning for district heating plants
- Optimal start-up of
 - Combined gas cycles
 - Coal fired plants

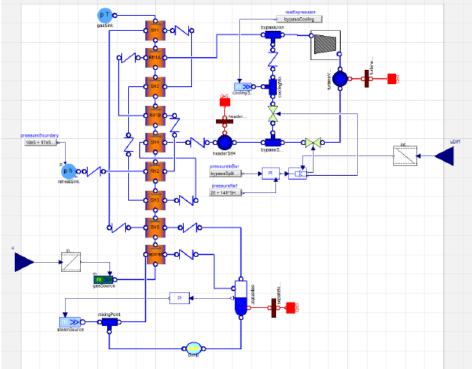
OPTIMIZATION CAPABLE MODELS

Library of optimization friendly thermodfluid components

- Accumulator
- Turbine
- Valves
- Heat exchangers
- Condensers
- Static and dynamics pipes
- Pipes with delay
- Media models

OPTIMIZATION CAPABLE MODELS

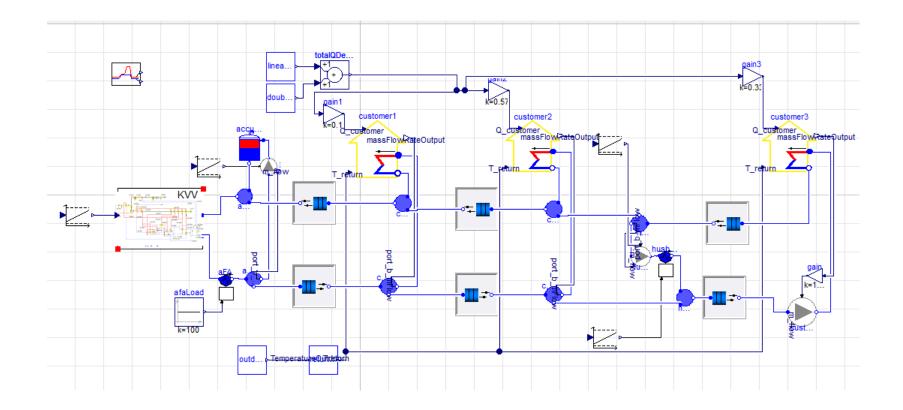

- High fidelity water & steam properties
 - Polynomials in pressure and enthalpy
 - Range: 0.1-184 bar
 - Valid in liquid, gas and 2 phase regions
- Simple water model
 - Constant properties
 - District heating water


OPTIMAL START-UP OF POWER PLANTS

- Several EU research projects (Siemens, Vattenfall)
- Minimize the start-up time and limit stress in Heat Recovery Steam Generator
- Method:
 - Development of dynamic models in Dymola
 - Detailed steam system (evaporator, re-heater, superheater, turbine)
 - Dynamic optimization of the load
 - Drive boiler or gas turbine to full load in minimum time
 - Stress monitored in header and evaporator drum

OPTIMAL START-UP OF COMBINED CYCLES

 Faster start-up and limited stress in critical components



PRODUCTION PLANNING

- Research project together with Vattenfall
- Motivation
 - Standard approach: simple linear plant models
 - Degrees of freedom: power flows
 - No representation of temperature, flowrate, pressure
 - But impact on electrical production, energy in network and accumulators
- Objective: Short-term production planning using nonlinear programming
- Method
 - Physical modeling in Modelica
 - Simulation in Dymola
 - Optimization wrt. plant economics in JModelica.org

DISTRICT HEATING NETWORK

PRODUCTION PLANNING: RESULTS

- Lower supply temperature
- Higher supply flows
- Lower power peaks at production sites
- Higher electricity production
 - Use of heat storage
 - Lower return temperature
 - No turbine by-pass
- Constraints on
 - Customer temperature
 - Pump capacity
 - Network capacity
 - Condenser pressure

toivo.henningsson@modelon.com

Want to know more?

jmodelica.org

> Users > User's Documentation > Ch. 6. Optimization