FRAUNHOFER-INSTITUT FÜR SOLARE ENERGIESYSTEME ISE

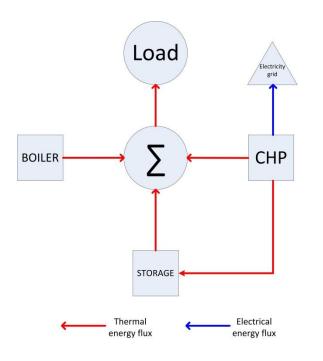
SUPERVISORY CONTROL OF A COMBINED HEAT AND POWER PLANT BY ECONOMIC OPTIMIZATION

Mustafa Göksel Delikaya

Fraunhofer-Institut für Solare Energiesysteme ISE

Freiburg, 23.03.2015

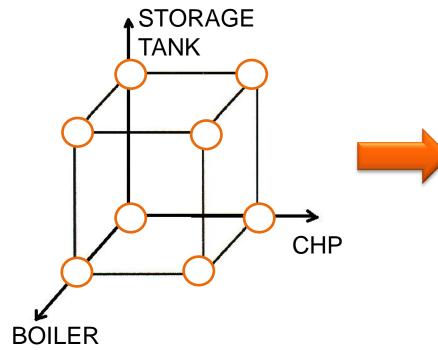
www.ise.fraunhofer.de


OUTLINE

- SYSTEM
 - System Boundaries
 - Operating States
 - Inputs & Outputs
- COST FUNCTION
 - Constraints
 - Mathematical Formulation
- IMPLEMENTATION
- RESULTS
 - Comparison of Heat-driven & Power-driven operation

SYSTEM

System Boundaries



Assumptions

- Heat Load and Prices are assumed to be perfectly predicted.
- All units may operate throughout a year.
- Electricity is only sold to the grid.
- Investment and maintenance costs are ignored.

Operating States

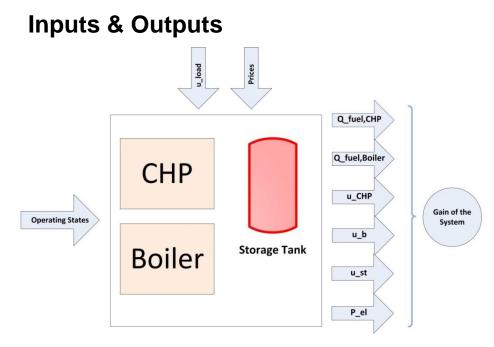
State 1 : CHP

State 2 : CHP + Boiler

State 3 : CHP + Storage

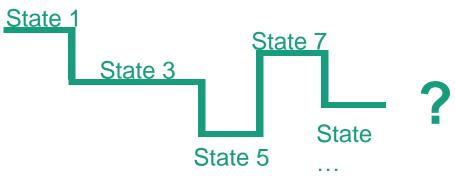
State 4 : CHP + Boiler + Storage

State 5 : Boiler + Storage

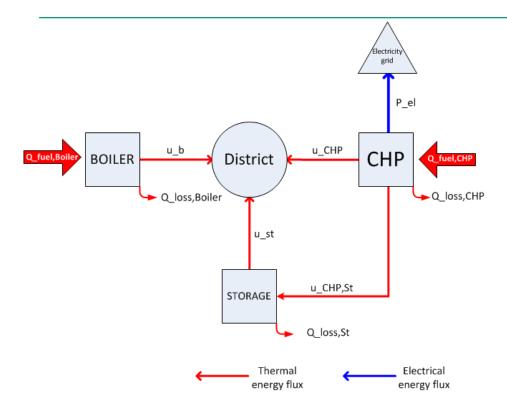

State 6 : Storage

State 7 : Boiler

State 8 : None


*Not all of them are decision variables!

Legend


 $Q_{\text{fuel,CHP}}$: Fuel consumption at CHP $Q_{\text{fuel,Boiler}}$: Fuel consumption at Boiler u_{CHP} : Heat supply by CHP u_{b} : Heat supply by Boiler u_{st} : Heat supply by Storage P_{el} : Electricity Production u_{load} : Heat Load

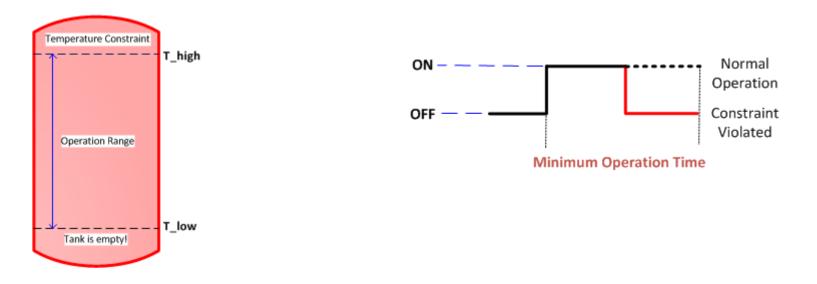
COST FUNCTION

Gains of units

 $J_{\text{CHP}} = \left\{ \left[\boldsymbol{P}_{\text{el}} \cdot \boldsymbol{c}_{\text{el}} + \boldsymbol{u}_{\text{CHP}} \cdot \boldsymbol{c}_{\text{heat}} \right] - \boldsymbol{Q}_{\text{fuel},\text{CHP}} \cdot \boldsymbol{c}_{\text{gas}} \right\} \cdot \boldsymbol{\tau}$ $J_{\text{Boiler}} = \left[u_{\text{b}} \cdot c_{\text{heat}} - Q_{\text{fuel,Boiler}} \cdot c_{\text{fuel}} \right] \cdot \tau$ $J_{\text{Storage}} = [u_{\text{st}} \cdot c_{\text{heat}}] \cdot \tau$ $J_T = J_{CHP} + J_{Boiler} + J_{Storage}$ Legend $Q_{\rm fuel, CHP}$: Fuel consumption at CHP $Q_{\text{fuel,Boiler}}$: Fuel consumption at Boiler $u_{\rm CHP}$: Heat supply by CHP $u_{\rm h}$: Heat supply by Boiler u_{st} : Heat supply by Storage $P_{\rm el}$: Electricity Production

 $c_{\rm el}$, $c_{\rm heat}$, $c_{\rm gas}$: Prices

 J_{CHP} , J_{Boiler} , J_{Storage} : Gains


 $Q_{\text{loss,CHP}}$, $Q_{\text{loss,Boiler}}$, $Q_{\text{loss,St}}$: Losses

🗾 Fraunhofer

Constraints

Temperature Constraint

Minimum Operation Time Constraint at CHP

Mathematical Formulation of the Cost Function

$$J_{\rm T} = max \sum_{t=1}^{H_p} (J_{\rm CHP}^{(t)} \cdot b_1^{(t)} + J_{\rm Storage}^{(t)} \cdot b_2^{(t)} + J_{\rm Boiler}^{(t)} \cdot b_3^{(t)})$$

subject to
$$T_{\rm s}^{(t)} < T_{\rm high}$$

(Temperature Constraint)

when
$$b_1^{(t)} - b_1^{(t-1)} \neq 0$$
, then $\sum_{k=t}^{(t+t_{min})} \left\| b_1^{(k)} - b_1^{(k-1)} \right\| = 0$

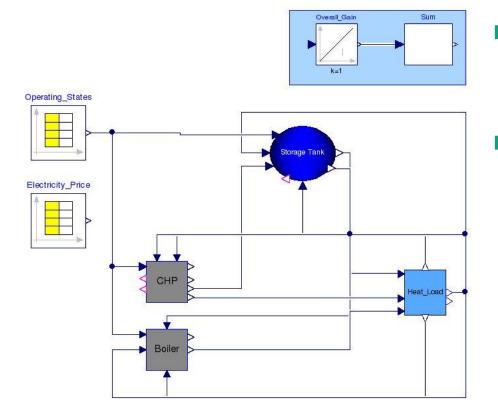
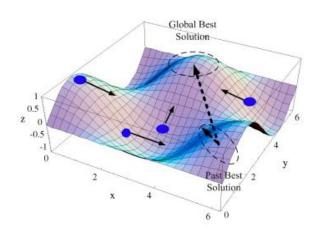

(Minimum Operation Time Constraint)

Table 1. Operating Statesbased on binary variables

States	b ₁	b ₂	b 3
1	1	0	0
2	1	0	1
3	1	1	0
4	1	1	1
5	0	1	1
6	0	1	0
7	0	0	1
8	0	0	0

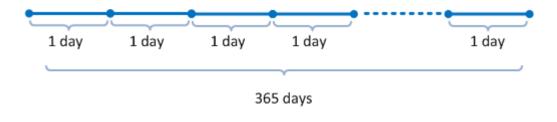
IMPLEMENTATION



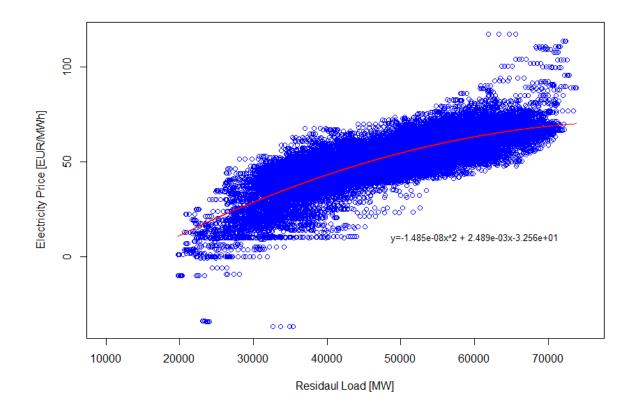
- Modelica/Dymola for Modeling & Simulation
- GenOpt (Generic Optimization Program) with Particle Swarm Optimization (PSO) Algorithm

PSO

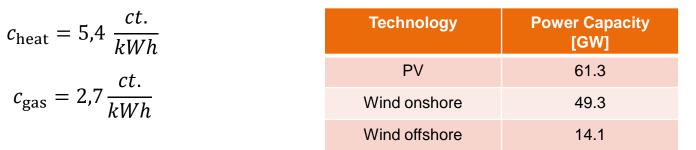
- Population based stochastic algorithm
- Inspired by swarm intelligence (bird flocks, fish schools etc.)
- particle best position & global best position

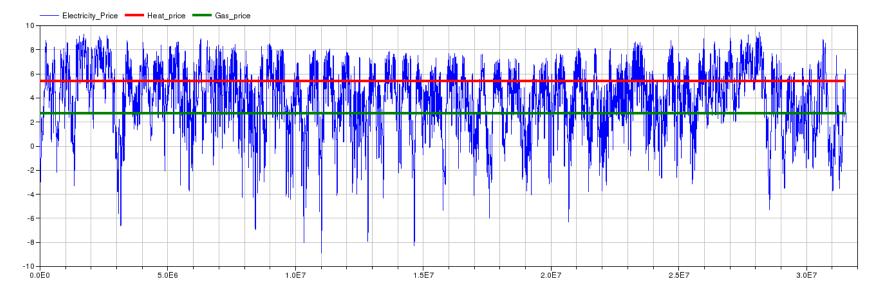


Particle velocity vectors in PSO [1]


RESULTS

- A Future Scenario (2023) is approximated for comparison.
- A heat-driven operation is chosen as a reference operation mode.
- Overall gains of heat-driven and power-driven operations for 1 year are compared. (365 sequential optimizations with prediction horizon of 1 day)


Residual Load & Electricity Prices (2011)



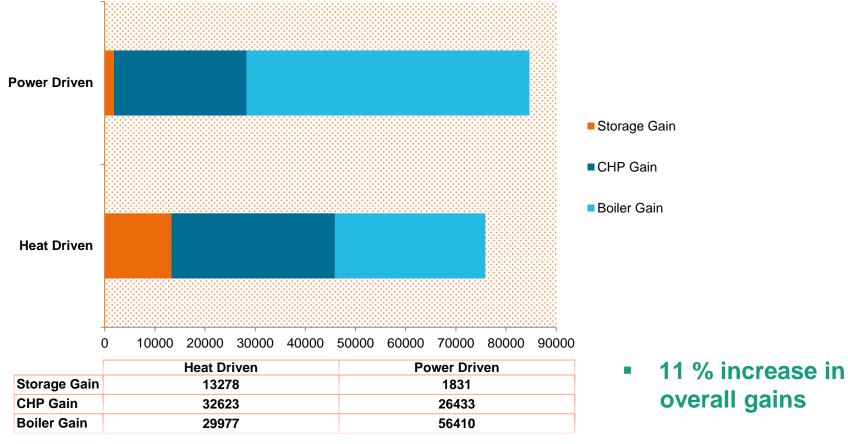

Electricity Prices (2023)

Table 2. Power Capacities for the simulation scenario. [2]

Comparison of gains of two operations

Gains [€/year]

Comparison of CHP gains

Operation Mode	CHP Gain	Operation Hours	Specific Gain
Heat Driven	32623 €/year	6210 hours	5,28 € / hour
Power Driven	26433 €/year	2300 hours	11,49 € / hour

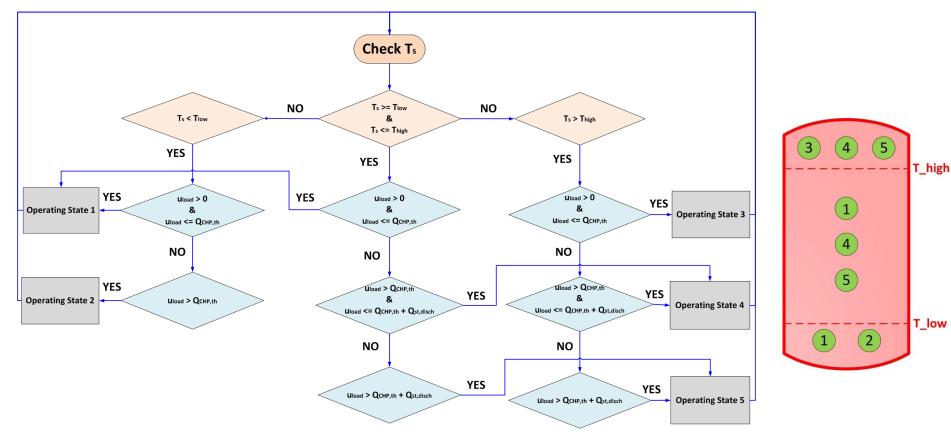
Table 3. Comparison with respect to specific gains of the CHP

References

[1] Varadi, D., (2013) Social learning algorithms : Particle Swarm Optimization (PSO)
[2] Elci, M., & Oliva, A., & Herkel, S., & Klein, K., & Ripka, A. (2015) Grid Interactivity of a Solar Combined Heat and Power District Heating System. International Conference on Solar Heating and Cooling for Buildings and Industry, SHC 2014.

Thanks for your attention

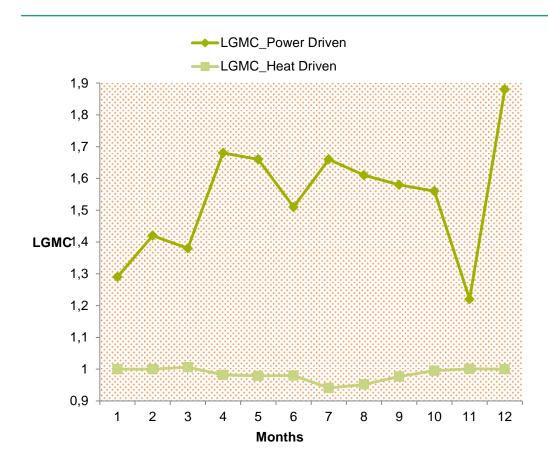
Fraunhofer-Institut für Solare Energiesysteme ISE


Mustafa Göksel Delikaya

www.ise.fraunhofer.de

mustafa.goeksel.delikaya@ise.fraunhofer.de

Heat Driven Model (Reference Model)

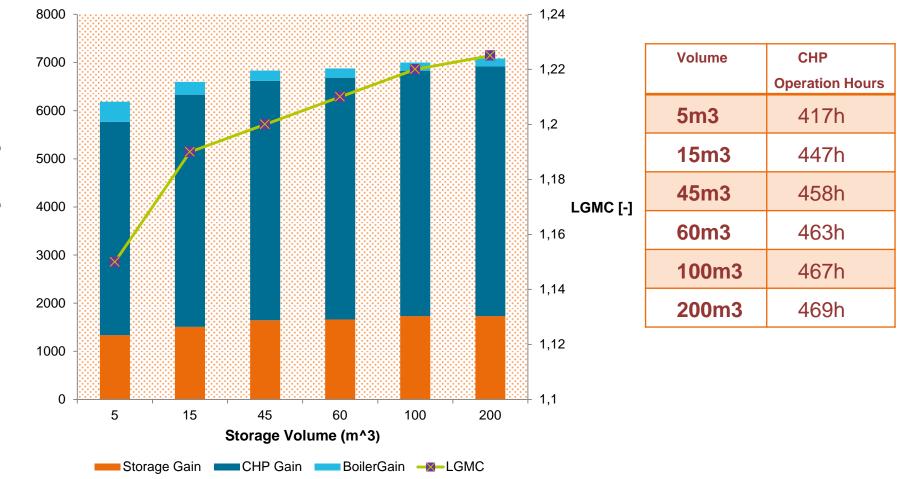


 $u_{\text{load}} = \text{Heat load}$

 $Q_{\rm CHP,th} = \rm CHP$ nominal thermal power

 $Q_{\rm St,disch}$ = Storage tank nominal discharge power

LGMC = Load-Grid Matching Coefficient


$$LGMC_{abs}(G) := \frac{\int P_{el}(\tau) \cdot G(\tau) \cdot d\tau}{W_{el} \cdot \bar{G}} [-]$$

where $W_{el} := \int P_{el}(\tau) \cdot d\tau$ [kWh]

*P*_{el} : Electricity Production*G* : Residual Load

- LGMC > 1 : Grid favorable Production LGMC < 1 : Grid adverse Production
- LGMC = 1 : Grid-neutral behavior

