

Optimal linearization of complex buildings envelope

Damien Picard¹ Lieve Helsen¹

March 2015

¹ KU Leuven, Department of Mechanical Engineering, Division of Applied Mechanics and Energy Conversion

Introduction

systems

KU LEUVEN

Minimization of energy cost using (linear) MPC

Introduction

Building Envelope

Slower dynamics (≈ days) Nearly linear

Dynamic linear controller model

HVAC system

Bacher et Madsen, 2011

System identification:

Difficulties:

- 1. Data
- 2. Multi-zones
- 3. No guarantee of optimal parameter values
- 4. Case and parameters specific
- 5. Complexity should be low
- 6. Optimization problem

KU LEUV

Linearization

Non-linear (Modelica) system

 $\dot{x} = f(x, u, w)$ y = g(x, u, w)

Linearization around
$$(\mathbf{x}_{e}, \mathbf{u}_{\star}, \mathbf{w}_{\star})$$

 $\dot{x} = f(x_{e}, u_{\star}, w_{\star}) + \frac{\partial f}{\partial x} \Big|_{(x_{e}, u_{\star}, w_{\star})} (x - x_{e}) + \frac{\partial f}{\partial u} \Big|_{(x_{e}, u_{\star}, w_{\star})} (u - u_{\star}) + \frac{\partial f}{\partial w} \Big|_{(x_{e}, u_{\star}, w_{\star})} (w - w_{\star})$
 $= A\tilde{x} + B_{u}\tilde{u} + B_{w}\tilde{w}$
 $y = g(x_{e}, u_{\star}, w_{\star}) + \frac{\partial g}{\partial x} \Big|_{(x_{e}, u_{\star}, w_{\star})} (x - x_{e}) + \frac{\partial g}{\partial u} \Big|_{(x_{e}, u_{\star}, w_{\star})} (u - u_{\star}) + \frac{\partial f}{\partial w} \Big|_{(x_{e}, u_{\star}, w_{\star})} (w - w_{\star})$
 $= g(x_{e}, u_{\star}, w_{\star}) + C\tilde{x} + D_{u}\tilde{u} + D_{w}\tilde{w}$

with u = heat inputs (from ventilation, radiators, ...)
w = disturbances (Ambient temperature, solar gains, wind speed, ...)

Linearization

Non-linear (Modelica) system

$$\dot{x} = f(x, u, w)$$
$$y = g(x, u, w)$$

$$\dot{x} = Ax + B_u u + B_w w$$
$$y = Cx + D_u u + D_w w$$

KU LEUV

Model order reduction:

$$\hat{\hat{x}} = \hat{A}\hat{x} + \widehat{B_u}u + \widehat{B_w}w y = \hat{C}\hat{x} + \widehat{D_u}u + \widehat{D_w}w$$

- + Most accurate linear model **around** (x_e , u_* , w_*)
- + Only most important states
- + Easily automatize in Dymola
- + Dymola function *linearizeModel* returning a state space model
- Inaccurate for strongly non-linear systems
- Not applicable for real building

Non-linearities in buildings

$$\dot{q}_{rad} = \sigma \epsilon A \left(T_1^4 - T_2^4 \right)$$

$$\downarrow$$

$$\tilde{q}_{rad} = A \sigma \epsilon 4 \tilde{T}_1^3 \left(T_1 - T_2 \right)$$

Exterior heat transfer:

Convection:

$$\dot{q}_{cv}^{(k)}(t) = h_{cv}(t) \left(T_{db}(t) - T_s^{(k)}(t) \right) h_{cv}(t) = \max \left\{ 5.01(v_{10}(t))^{0.85}, 5.6 \right\} W/m^2 K$$

Longwave radiation:

$$\dot{q}_{lw}^{(k)}(t) = \sigma \epsilon_{lw}^{(k)} \left(\left(T_s^{(k)} \right)^4 (t) - F_{ce}^{(k)} T_{ce}^4 - (1 - F_{ce}^{(k)}) T_{db}^4 \right)$$

$$F_{ce}^{(k)} = \frac{1 + \cos i^{(k)}}{2}$$

$$state$$

$$input$$

$$\dot{q}_{lw}^{(k)}(t) = 5.67 \epsilon_{lw}^{(k)} \left(T_s^{(k)} - \sqrt[4]{F_{ce}^{(k)}} T_{ce}^4 - (1 - F_{ce}^{(k)}) T_{db}^4 \right)$$

Non linearities in buildings

Interior heat transfer:

Convection:
$$\dot{q}_{cv}^{(k)}(t) = h_{cv}^{(k)}(t) \left(T_{db}(t) - T_s^{(k)}(t) \right)$$

 $h_{cv}^{(k)}(t) = \max \left\{ 1, n_1^{(k)} \left(D^{(k)} \right)^{n_2^{(k)}} \left| T_{db}(t) - T_s^{(k)}(t) \right|^{n_3^{(k)}} \right\}$
 $\dot{q}_{cv}^{(k)}(t) = 3.076 \left(T_{db} - T_s^{(k)} \right)$

Longwave radiation using delta-star transformation with fictive radiant star node:

$$\begin{split} \dot{q}_{lw}^{(k)}(t) &= \dot{q}_{lw,g}^{(k)}(t) + \sigma f_{rs}^{(k)} \left(\left(T_s^{(k)}(t) \right)^4 - (T_{rs}(t))^4 \right) \\ \frac{1}{f_{rs}^{(k)}} &= \varepsilon_{lw}^{(k)} + \frac{A^{(k)}}{\sum_{j=1}^n A^{(j)}} : n \triangleq |\mathcal{J}^{(k)}| \end{split}$$

KU LEUVEN

Solar gains:

 \rightarrow treated as inputs

Non linearities in buildings

Only the external convection needs to be linearized

Linearization method

1) Automatic linearization of all components of model and gains and disturbances treated as inputs:

2) Apply function *linearizeModel* to obtain state space formulation

KU

3) (Optinal) apply model order reduction

Simple test

Absolute error on B-matrix

KU LEUV

! Working point (u,, x) for linearization !

Three zones model

Simulation performance

Prediction performance and 1-day ahead prediction

- Time step of 15'
- Multisine with 30 frequencies + distrubances
- Compute *NRMSE* = 100 $\left(1 \frac{\|y \hat{y}\|}{\|y \bar{y}\|}\right)$

Prediction performance and 1-day ahead prediction

NU LEUVEN

Prediction performance and 1-day ahead prediction

Simulation performance

Simulation performance

- SSM14 1.6 times faster than 53-states
- Faster initialization

Conclusions

- Building are relatively linear
- Automatic linearization is possible
- Loss of accuracy due to convection
- Very good prediction performance with reduced model
- CPU reduction for testing

Further work

- Improve linearization of convection
- Automate model order reduction

