KU LEUVEN

Optimal HVAC control for state-of-the-art office building: methodology and open questions

Filip Jorissen Lieve Helsen

Model predictive control

min J(x, u) — Cost

s.t. $\dot{x} = f(x, u) \longrightarrow$ System $0 = h(x, u) \, _ \,$ Constraints $0 \leq q(x, u)$

KU LEUVEN

- Building envelope
 - o Zones
 - Glazing
 - \circ Walls
- Occupants and internal gains
- Controls

System

- HVAC
 - Ventilation
 - Heat exchangers
 - Fans
 - Ducts
 - Chiller
 - VAV
 - Humidifier

- HVAC
 - Hydronics
 - Heat exchangers
 - Pump
 - Pipes
 - Heat pump
 - Valve
 - Heater
 - Solar collector
 - Thermal storage
 - Bore field
 - Concrete core activation

no noto coro

System (non-)linearities

- Building envelope: I */
 - Thermal conduct
 - Thermal convecti
 - Thermal radiatior
- Heat exchangers: r
 NTU method:
- Speed controlled fans/pumps:
 - Similarity laws
 - Pump curve
 - Load curve

System (non-)linearities

- Ducts / pipes
 - o Load curve for fan / pump!
 - Conservation of mass
 - Perfect mixing of energy: $\frac{\mathrm{d}T}{\mathrm{d}t} = -\frac{\mathrm{d}T}{\mathrm{d}t}$

$$= -\frac{(T - T_{in})\dot{m}}{m_{pipe}}$$

Discontinuous mixing in splitter around zero flow

• Chiller / heat pump, heater similar

$$Q = f(T_1, T_2, ...)$$

 $COP = f(T_1, T_2, ...)$
 $Pel = \frac{Q}{COP}$
 $T_{out} = T_{in} + \frac{Q}{\dot{m}c_p}$

System (non-)linearities

- Thermal storage
 - Bi-directional flows
 - Mixing or stratified temperature?

$$m_{tot} = m_{hot} + m_{cold}$$
$$E_{hot} = c_p \cdot T_{hot} \cdot m_{hot}$$
$$\frac{\mathrm{d}E_{hot}}{c_p \,\mathrm{d}t} = \dot{m}_{in} \cdot T_{in} - \dot{m}_{out} \cdot T_{hot}$$

Internal/external gains: non-linear functions of time

KU LEUVEN

System dynamics

- Fast dynamics:
 - Sensors
 - Pipes
 - Air temperature
 - Heat production devices

KU LEUVEN

- Slow dynamics
 - Building envelope

- Fast dynamics -> small time steps -> slow
 - Neglect fast dynamics
- Building envelope
 - Large state space
 - -> Model order reduction
 - But which techniques to use?
 - Asymptotic waveform evaluation
 - Arnoldi method
 - Laguerre method
 - Truncation method
 - Hankel norm reduction
 - Proper orthogonal decomposition, etc

Simplify pipe hydronics: Q
 Into: Q

 $Q = \dot{m}c_p\Delta T$ Q $Q < \dot{m}_{nom} \cdot c_p \cdot \Delta T$ $Q < \Delta T_{nom} \cdot c_p \cdot \dot{m}$

Heat exchanger

 $Q < a \cdot (T_1 - T_2) = Q_{max}$

- Post-processing using mass flow rate required
- Problem if bi-directional heat flow or fixed mass flow rate
- How to obtain feasible solution?

- Pumps/fans
 - Ignore pressure drops, control mass flow rate directly
 - Fit cost curve based on expected working points:

$$P_{el,pump} = c_1 + c_2 \cdot \dot{m} + c_3 \cdot \dot{m}^2$$
$$\dot{m} \le \dot{m}_{max}$$

- Post-processing required for finding pump speed
- Sub-optimal -> better approach?

• Heat pump

$$Q$$

$$Q < Q_{max} = f(T)$$

$$P_{el} = \frac{Q}{COP_{nom}} \neq f(T) \dots$$
o Time modulation for Q?

• Thermal storage

$$m_{tot} = m_{hot} + m_{cold}$$
$$E_{hot} = c_p \cdot T_{hot} \cdot m_{hot}$$
$$\frac{\mathrm{d}E_{hot}}{c_p \,\mathrm{d}t} = \dot{m}_{in} \cdot T_{in} - \dot{m}_{out} \cdot T_{hot}$$

KU LEU

- Calculation using Q? But then no way to find T
- Force $T = T_{high}$ to be constant, but then suboptimal
- Internal gains: inputs

Conclusion

- Building: linear
 - Model order reduction, but which technique to use?
- HVAC:
 - Can use heat flows Q -> linear
 - But how to reformulate constraints and cost function?

KUL

Generic way for performing post-processing?

