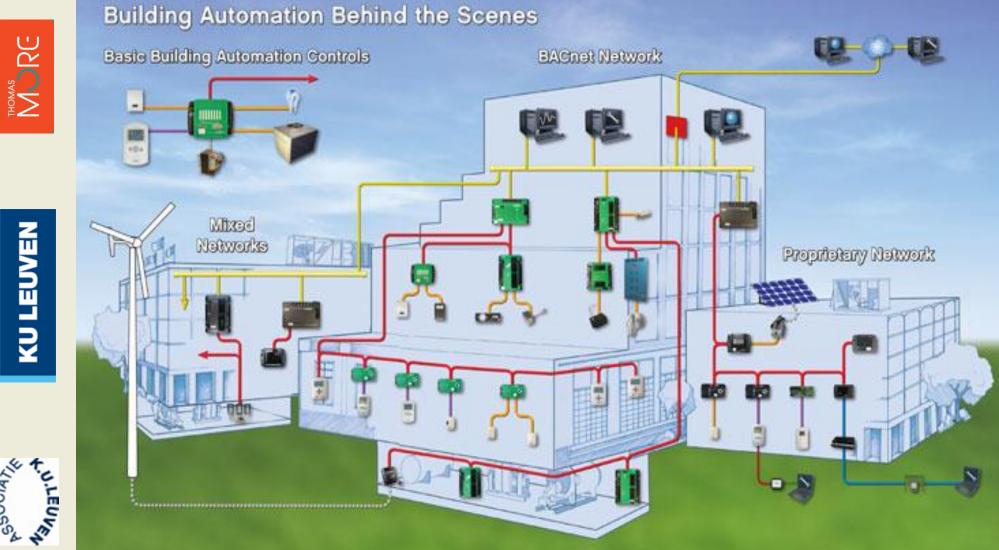


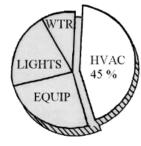
KU LEUVEN

Model selection and identification for (MB) CCx in office buildings


- Intro
 - HVAC & BEMS
 - Energy use & Related cost(s)
 - Nomenclature: (MB) CCx?
 - CCx subtasks
 - Research questions?
- HVAC & HVAC control
 - Common practice
 - State of the art (SoTa)
 - In the pipeline
- Results & Discussion
 - Model selection, identification
 - Evaluation criteria
 - Reusability
- Conclusion

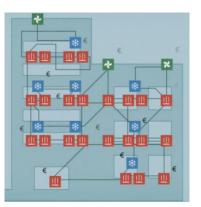
KU LEUVEN

*SOCIATA


Intro: HVAC & BEMS

Source: http://www.kmccontrols.com/

Intro: Energy use & related costs


Indoor thermal comfort (& IAQ) in offices

- Comes with a large (often hidden) cost!
 - HVAC equipment:
 - HVAC control:
 - HVAC energy cost:
 - Maintenance cost:
 - Discomfort cost:

~10% construction c. ~3% construction cost ~40% of prim. En. Use ~3 €/y/m² ~5 €/Kh²/y/m²

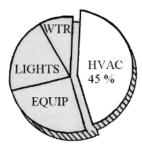
http://www.kmccontrols.com/

http://www.tibucon.info

http://greenberg-art.com/.Illustrations

KU LEUVEN

SOCIAT


Intro: Nomenclature (MB)CCx?

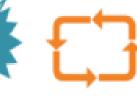
Commissioning Cx **Continuous Commissioning** CCx • Re(tro)-commissioning Re(tro)- Cx • Monitoring based / Model based MB • MEASURED ENERGY ADJUSTED BASELINE AVOIDED ENERGY ENERGY ECM INITIATIVE BASELINE PERIOD REPORTING PERIOD = http://www.c3resources.co. uk TIME

4

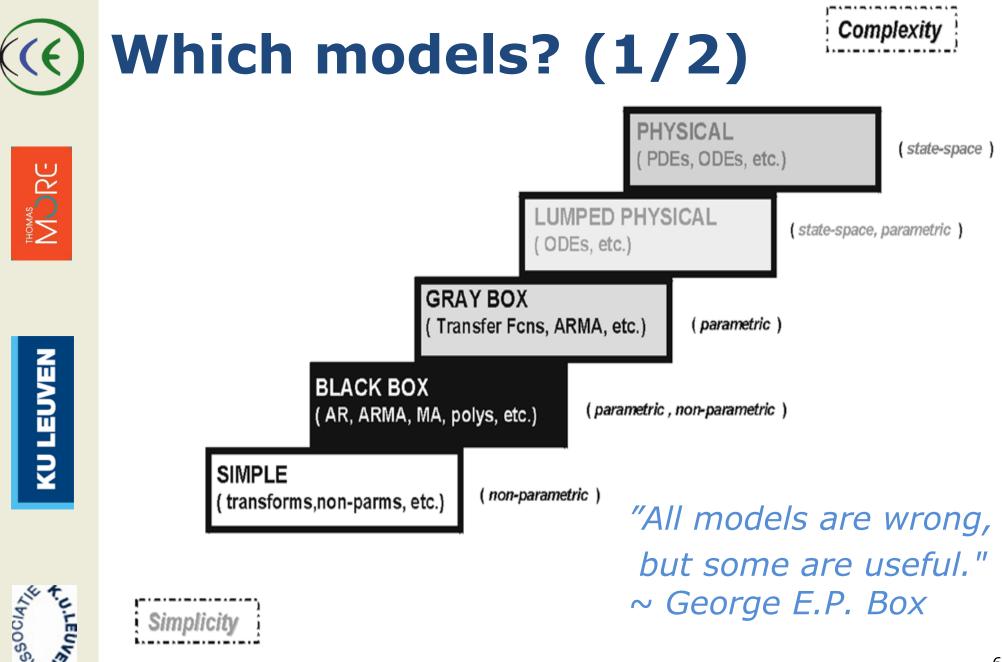
Intro:	
CCx s	ubtasks

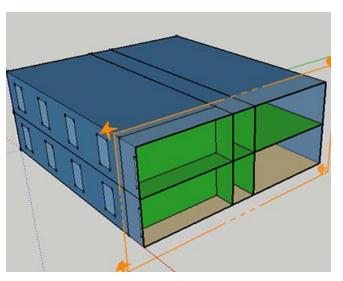
- Efficiency Improvement?
 - A. Baselining, Benchmarking, Energy conserving opportunities
 - B. Fault detection, diagnosis
 - C. Improved Control

- ECO FDDe AdvC
- ➔ Right models may assist in these sub-tasks!



MEASURE


ANALYZE


Improve

CONTRC

Which models? (2/2)

- What "choices" are there?
 - System: Building, HVAC, users,...
 - Type: WB/GB/BB, det./stoch,...
 - Structure: SS/TF, cont/discr,...
 - Domain: time/freq
 - Order: #y,s,u,d,p
 - Software: Modelica, ...
 - Parameter identification:
 - Methods
 - Training and validation data
 - Performance criteria

Research questions?

- 1. What CCx measures are implemented (& how)?
- 2. Data & calculation requirements?
- 3. Which parts can be re-used?
- → Focus on:
 - Model based control (MBC)
 - Hydronic (water based) HVAC
 - In office buildings

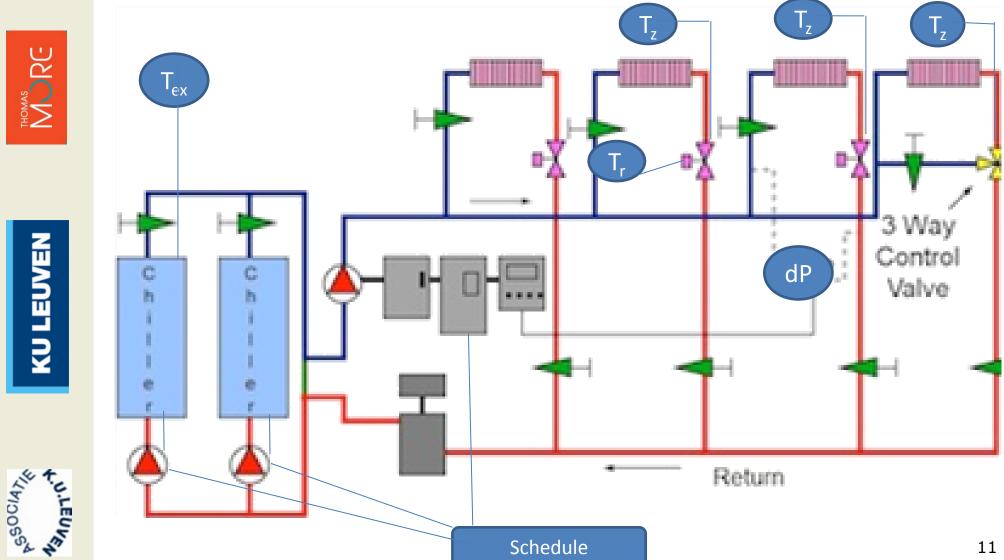
KU LEUVEN

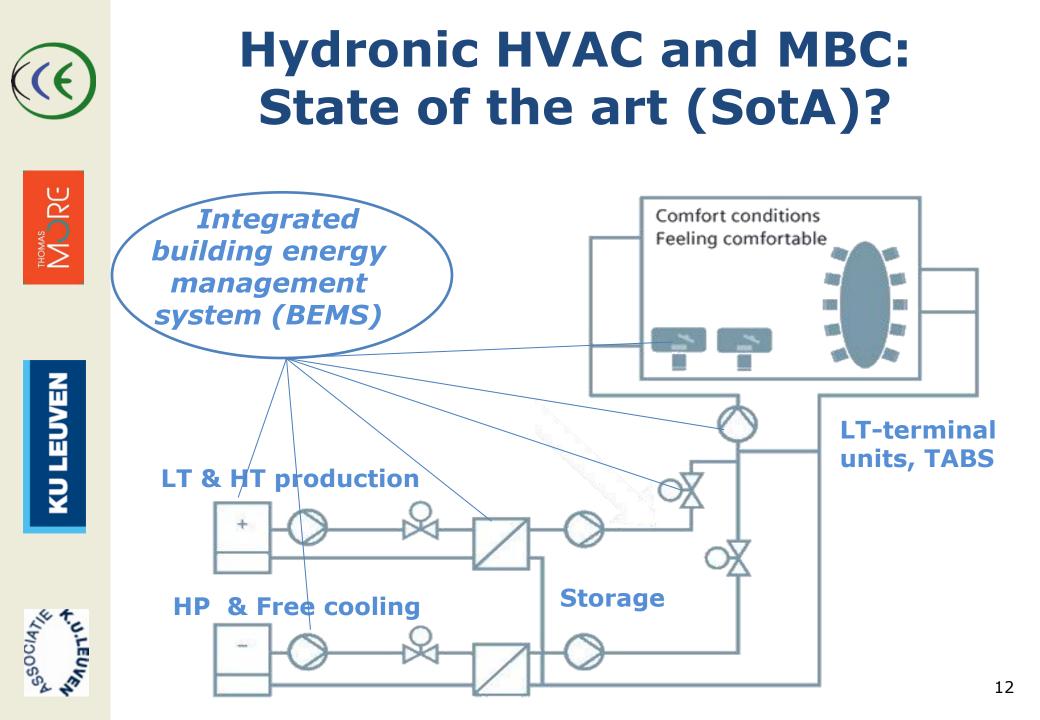
http://www.damuth.com/

KU LEUVEN

Model selection and identification for (MB) CCx in office buildings

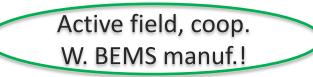
- Intro
 - HVAC & BEMS
 - Energy use & Related cost(s)
 - Nomenclature: (MB) CCx?
 - CCx subtasks
 - Research questions?


HVAC & HVAC control


- Common practice
- State of the art (SoTa)
- In the pipeline
- Results & Discussion
 - Model selection, identification
 - Evaluation criteria
 - Reusability
- Conclusion

KU LEUVEN

Hydronic HVAC and MBC: Common practice



KU LEUVEN

Hydronic HVAC and MBC: In the "pipeline"? (1/4)

- Emerging MPC for HVAC (Model predictive control):
 - At plant level:
 - Czech Republic (Siroki, 2011), coop with Honeywell
 - Sweden (Gruber, 2014)
 - Spain (Castila, 2014)
 - Australia (West, 2014)
 - ...
 - At **building level** (plant + room level):
 - Oklahoma, (Dong, 2010)
 - France, (Lamoudi, 2011), coop with Schneider Electric
 - Berkeley (Bengea 2013)
 - Philadelphia (Pengfei, 2013)
 - Switzerland (Oldew., 2013), coop with Siemens
 - Belgium (Soubron, 2014)
 - Belgium (De Koninck, 2014)

14

Hydronic HVAC and MBC: Pipeline"model structures (2/4)

- Different *flavours* of MPC
 - At plant level:
 - Czech republic (Siroki, 2011)
 - Sweden (Gruber, 2014)
 - Spain (Castila, 2014)
 - Australia (West, 2014)

WB-SS (NL) GB-SS (NL) WB-SS (NL) GB-TF (Lin)

- ..
- At building level (plant + room level):
 - Oklahoma, (Dong, 2010)
 - France, (Lamoudi, 2011)
 - Philadelphia (Pengfei, 2013)
 - Switzerland (Oldew.,2013)
 - Belgium (Soubron, 2014)
 - Belgium (De Koninck, 2014) GE

Historically: WB!

Now: GB!

WB-SS (NL, stoch.) **GB-SS** (NL, distr.) BB-SS (Lin, ARX) **GB-SS** (bi-lin, MI) **GB-SS** (NL) **GB-SS (NL)**

15

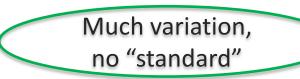
MBC implementations: "Pipeline"model orders (3/4)

- Model orders: low # states & medium (1-3) #inputs!
 - At plant level:
 - Czech republic (Siroki, 2011)
 - Sweden (Gruber, 2014)
 - Spain (Castila, 2014)
 - Australia (West, 2014)

1y 2(4)s (2)u 1d 2y, (2)s, (2)u, 5d 1y, 5(2)s, (1)u, 14d 5(7)y, 4(4)s, (3)u 0d

- ..
- At building level (plant + room level):
 - Oklahoma, (Dong, 2010)
 - France, (Lamoudi, 2011)
 - Philadelphia (Pengfei, 2013)
 - Switzerland (Oldew., 2013)
 - Belgium (Soubron, 2014)
 - Belgium (De Koninck, 2014)

```
(1)y, (3)s, 1(1)u, 2d
11(?)y, 3s, ?(?)u, 3d
9(1)y 2s 6(1)u 2d
32(2)y,15(1)s, 9(1)u, 6d
8y, 3(2)s, (3)u, 5d
```


Low # of states & outputs. Typical order: 2-3 /temp reading

. . .

MBC implementations: "Pipeline" ident. methods (4/4)

- Wide variety of identification methods!
 - At plant level:
 - Czech republic (Siroki, 2011) (PC Relevant Ident. (N4SID)
 - Sweden (Gruber, 2014)
 Unspecified
 - Spain (Castila, 2014) Adaptive (unspecified)
 - Australia (West, 2014)
 Unspecified

- At building level (plant + room level):
 - Oklahoma, (Dong, 2010) Subspace trust region solve
 - France, (Lamoudi, 2011) Prediction Error Minimisation (PEM)
 - Philadelphia (Pengfei, 2013) LS-estimation
 - Switzerland (Oldew., 2013) Hankel-norm reduction
 - Belgium (Soubron, 2014) MPC Relevant ident.
 - Belgium (De Koninck, 2014) ...

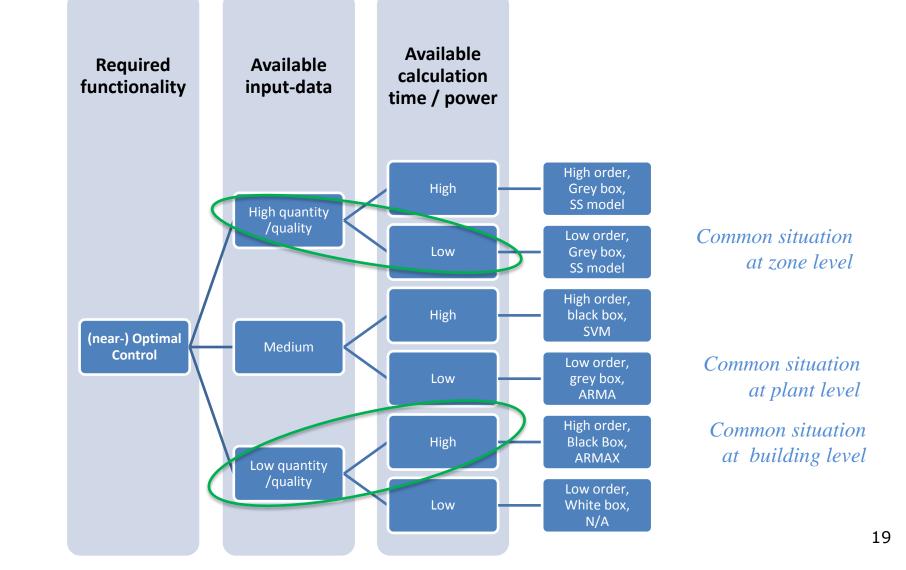
KU LEUVEN

MUR

KU LEUVEN

Model selection and identification for (MB) CCx in office buildings

- Intro
 - HVAC & BEMS
 - Energy use & Related cost(s)
 - Nomenclature: (MB) CCx?
 - CCx subtasks
 - Research questions?
- HVAC & HVAC control
 - Common practice
 - State of the art (SoTa)
 - In the pipeline


Results & Discussion

- Model selection, identification
- Evaluation criteria
- Reusability
- Conclusion

MURG

Control model-, identificationand structure-selection

KU LEUVEN

+.U.LEUK

MBC Evaluation criteria

Model quality criteria (MQC)

- short-term prediction accuracy
- short-term state estimation
- Suitable temporal resolution
- Robustness

Evaluation criteria:

- Open loop, 1-step-ahead prediction RMSE
- Closed loop MSE, MAE, RMSE, cv(RMSE)
- In-operation KPI-performance vs theoretical
- Modeling requirements
- Computational requirements
- Input data requirements

Reusability for MBC

- WITHIN a subtask: Model orders are often similar :
 - In ECO: Low #inputs in ECO, #1-2 states/zone
 - For MBC: Medium #inputs in MBC #3-5 states/zone
 - For FDDe: High #inputs, #10-20 states / system
- **BETWEEN** subtasks: •
 - Large diversity:
 - Long term, integrated pred. performance for ECO
 - Short term, dynamic pred. perf. for MBC
 - Short term, static perf for FFDe
 - Large variety of models type and structures:
 - For ECO: White/Grey box (mostly static, multizone)
 - For MBC: (dynamic multizone) white/grey/black box
 - For FDDe: Black box (mostly dynamic, multizone)
 - Why? Different Evaluation criteria!

KU LEUVEN

Few opportunities for full model exchange between CCx subtasks. (GB structures), ident. techniques and datasets may be shared!

KU LEUVEN

Model selection and identification for (MB) CCx in office buildings

- Intro
 - HVAC & BEMS
 - Energy use & Related cost(s)
 - Nomenclature: (MB) CCx?
 - CCx subtasks
 - Research questions?
- HVAC & HVAC control
 - Common practice
 - State of the art (SoTa)
 - In the pipeline
- Results & Discussion
 - Model selection, identification
 - Evaluation criteria
 - Reusability
- Conclusion

MB-CCx Conclusions:

- On model selection:
 - Take available calculation power & data quality/quantity into account!
 - No model structure suitable for multiple subtasks
 - Large diversity in used (usefull?) models between and within MBC-subtasks
 - Model order diversity small within MBC subtask
- On model identification:
 - Resource & technology sharing between MB CCx-subtasks can mean a costdown for:
 - Calculation power (hardware)
 - Obtaining (high quality) identification data
 - Applying parameter identification techniques
- Future work & more details: Journal paper (under construction), titled: "Review of model selection and identification for (MB) CCx implementations in office buildings"

KU LEUVEN

"YOU NEVER CHANGE THINGS BY

Questions?

FIGHTING THE EXISTING REALITY. TO CHANGE SOMETHING, BUILD A NEW MODEL THAT MAKES THE EXISTING MODEL OBSOLETE."

- BUCKMINSTER FULLER