KU LEUVEN

Comparing state estimation techniques for model predictive control

Mats Vande Cavey (KU Leuven)

State estimation of states of simple (non-linear) Modelica model

Quantitative and qualitative comparison of different algorithms

Model predictive control on real buildings

Optimizing future control starts from current state
 Current state not fully measured

How

Compare three state estimation algorithms:

- 1. Deterministic state estimation
- 2. Moving horizon estimation
- 3. Unscented Kalman Filter

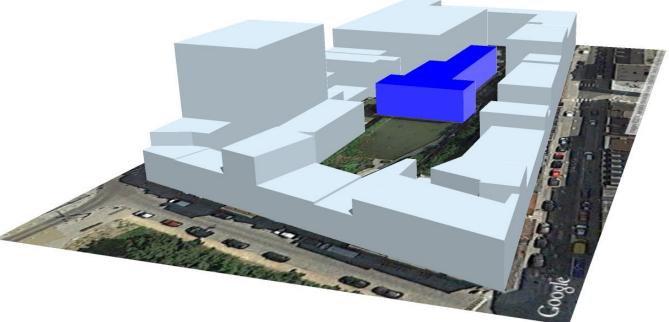
in three different cases:

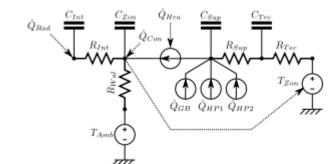
- Ideal (simple model simple model)
- Non-ideal (simple model complex model)

KUL

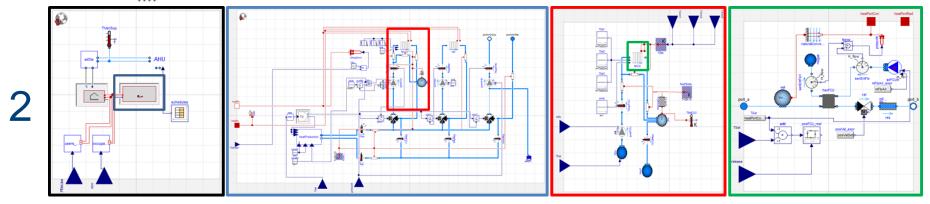
• Real (simple model – real building)

3E headquarters in Brussels Two floors, 40 – 80 people Renewed heating system





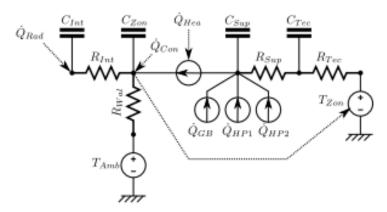
- 1. Simple building model
- 2. Complex building model
- 3. Real building



3 different cases, same inputs dataset

Ideal (simple-simple):

- All states known
- Noise properties added/known (Gaussian? Uniform?)
- Use only 'output' states for estimation
- Compare states directly with counterpart (open loop simulation, 1 day?)

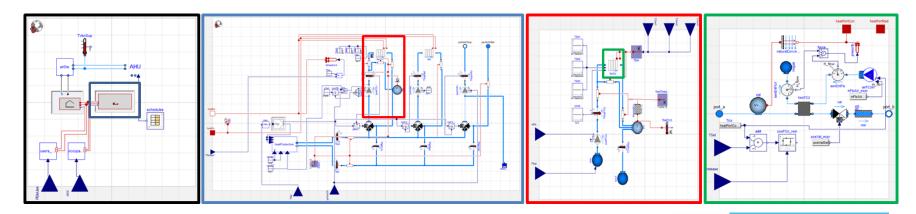


3 different cases, same inputs dataset

Ideal (simple-simple)

Non-ideal (simple-complex):

- All variables available
- Noise properties to 'measurements' are known
- Check output state with measured counterpart
- Investigate all states



KU LEUN

3 different cases, same inputs dataset

Ideal (simple-simple)

Non-ideal (simple-complex)

Real case (simple-real):

- Measurements have intrinsic error
- Investigate all states and compare to other cases

State estimation (example)

Model for state estimation (paper, Rao et al. 2003)

 $\frac{d2c (Ts=1s, matlab)}{continuous model}$

$$\dot{x} = \begin{bmatrix} .99 & .2 \\ -.1 & .03 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} w \qquad \dot{x} = \begin{bmatrix} .01 & .34 \\ -.17 & -1.16 \end{bmatrix} x + \begin{bmatrix} .2 \\ 1.68 \end{bmatrix} w$$
$$y = \begin{bmatrix} 1 \\ -3 \end{bmatrix} x + v_k \qquad y = \begin{bmatrix} 1 \\ -3 \end{bmatrix} x + v_k$$

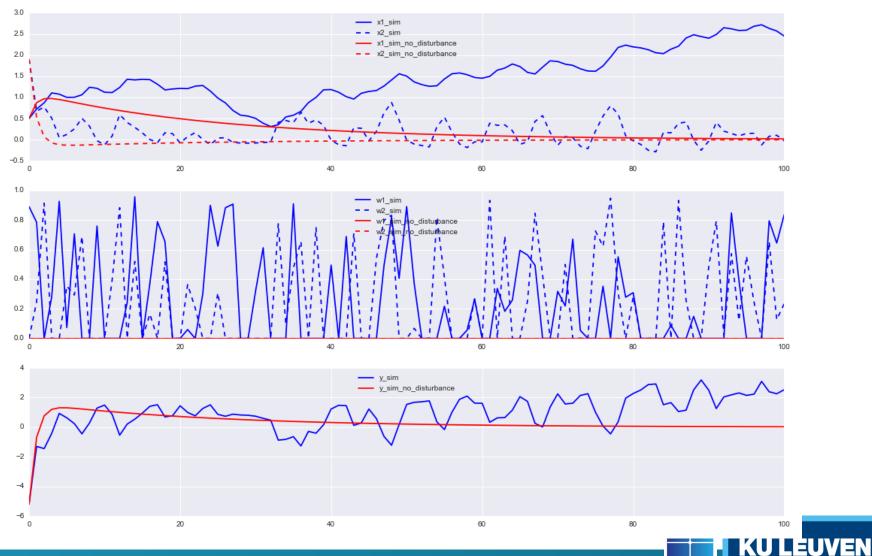
KU LEUV

y = output to fit

w = disturbance which is unknown (to the model) N(μ =0, σ =1), only positive values



No state estimation (no disturbance)



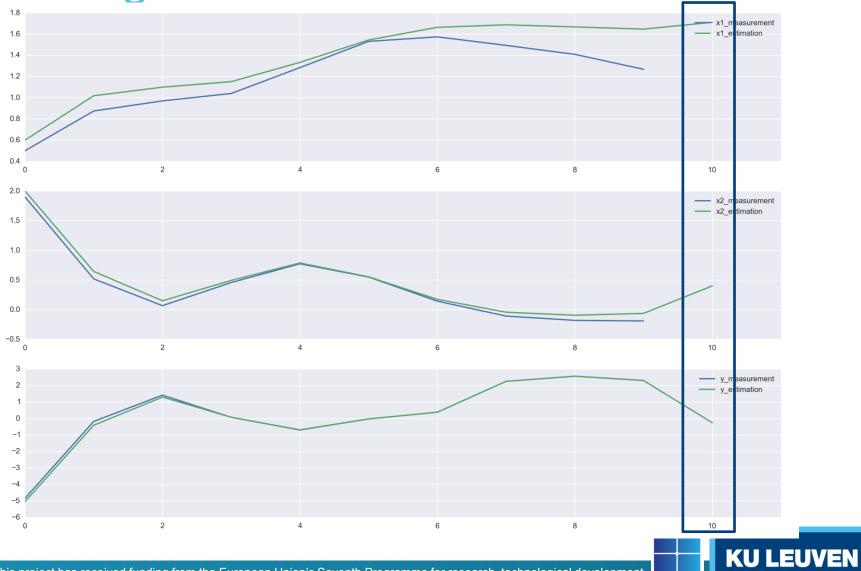
 $\langle 0 \rangle$

State estimation

Mitigate effect of unknown disturbance

- ∘ Kalman filter approaches (\rightarrow 3)
 - Prediction (guess)
 - Correction (statistical knowledge of the unknown disturbance)
 - (Calculation)
- Moving horizon approach (\rightarrow 1,2)
 - Find optimal values for variables and/or parameters which fit model output to measurements over past horizon
 - Allows constraint formulation
 - (Optimization)

Moving horizon estimation



This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 308991.

 $\langle 0 \rangle$

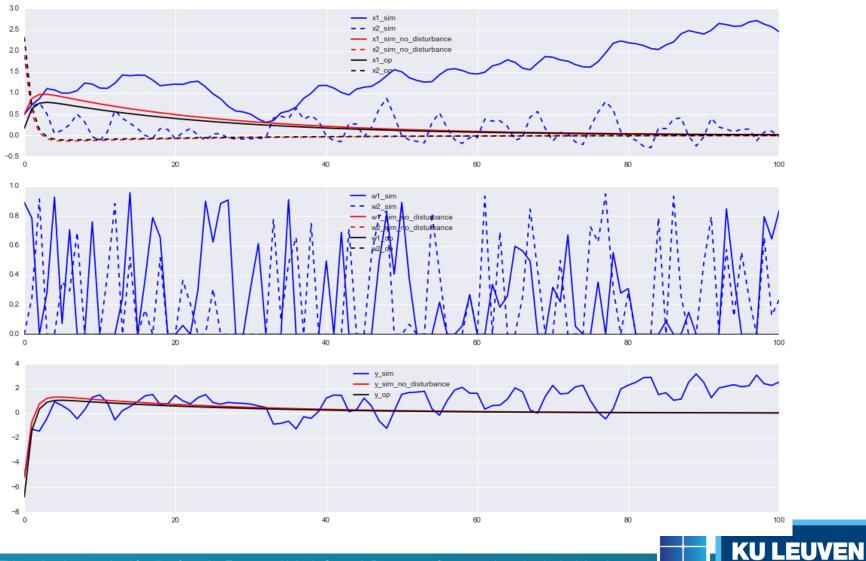
Moving horizon estimation

$$\min_{x_0} \sum (y - y_{meas})^T \mathbf{R}^{-1} (y - y_{meas})$$

- Initial values of the states to get best output over the past horizon
- Ok if disturbances have low influence
- Easiest implementation

Deterministic

Moving horizon estimation (determistic)



Moving horizon estimation

Statistical $\min_{[x_0]\{w_k\}} \sum (y - y_{meas})^T R^{-1} (y - y_{meas}) + (w_k)^T Q^{-1} (w_k)$

- Fit the output 'y'
- Try to estimate minimal disturbances 'w'
 - \rightarrow Add unknown state disturbance to the Modelica model

```
model sim
  extends partial_sim();
  Modelica.Blocks.Interfaces.RealInput w1;
  Modelica.Blocks.Interfaces.RealInput w2;
equation
  der(x1) = a11*x1 + a12*x2 + b1*w1;
  der(x2) = a21*x1 + a22*x2 + b2*w2;
end sim;
```

$$\dot{x} = \begin{bmatrix} .01 & .34 \\ -.17 & -1.16 \end{bmatrix} x + \begin{bmatrix} .2 \\ 1.68 \end{bmatrix} w$$
$$y = \begin{bmatrix} 1 \\ -3 \end{bmatrix} x + v_k$$

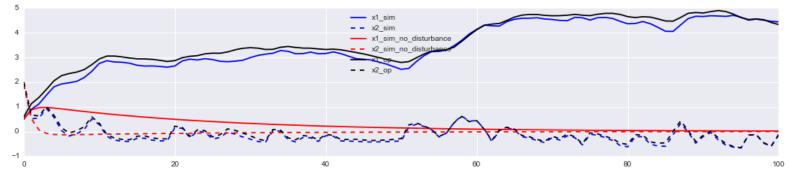
Moving horizon estimation (solutions) $\min_{\{x_0\}\{w_k\}} \sum (y - y_{meas})^T R^{-1} (y - y_{meas}) + (w_k)^T Q^{-1} (w_k)$

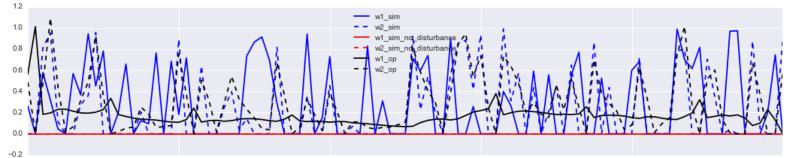
Use of ExternalData class in JModelica.org

Different solutions for different weights.

- Large ratio R^{-1} over Q^{-1} : disturbances have smaller covariance
- Look at
 - $Q^{-1} = 1, R^{-1} = 1^{e}2$ (best guess, paper)
 - $Q^{-1} = 1, R^{-1} = 1^{e}4$ (high)
 - $Q^{-1} = 1, R^{-1} = 1^{e} 2$ (low)

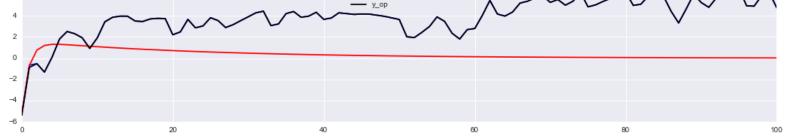
$Q^{-1} = 1, R^{-1} = 1^{e}2$ (best guess)



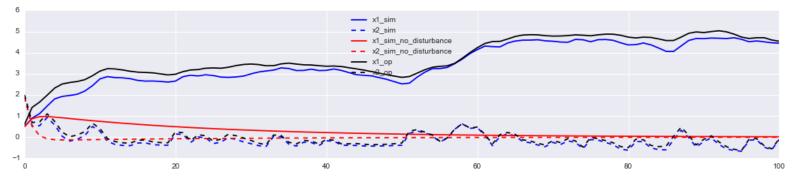


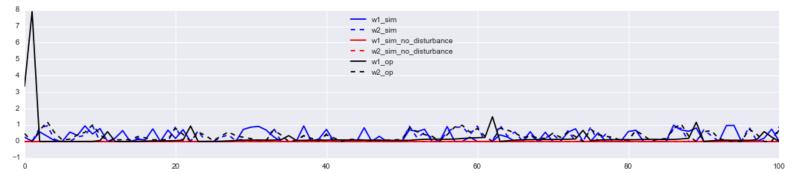
100

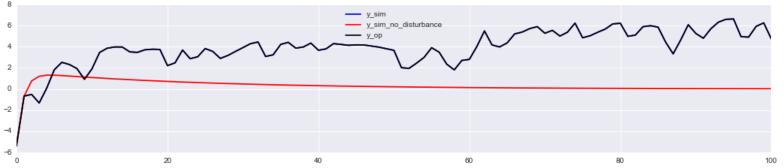
KU LEUVEN



$Q^{-1} = 1, R^{-1} = 1^{e}4$ (high)



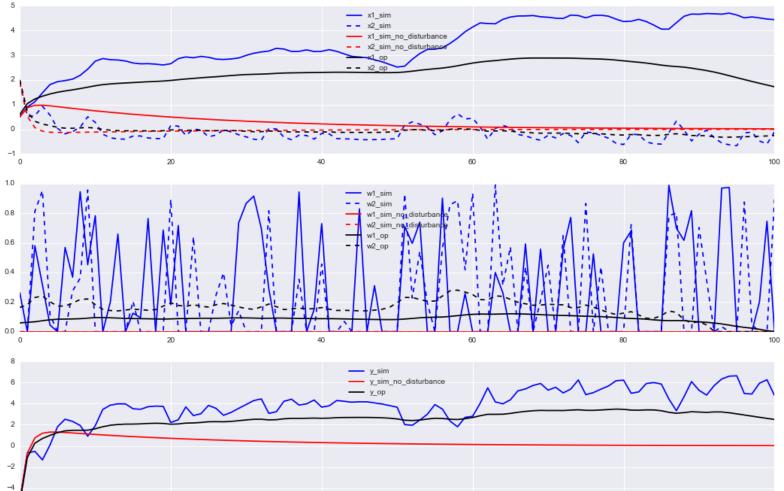




This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 308991.

KU LEUVEN

$O^{-1} = 1$. $R^{-1} = 1^{e} - 2$ (low)



60

80

-6

20

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 308991.

40

KU LEUVEN

100

Open loop simulation on next period

Calculate rmse

Evaluate



Evaluate

 $Q^{-1} = 1, R^{-1} = 1^{e}2$ (normal, paper)

- rmse x1 : 0.044
- rmse x2 : 0.007
- rmse y : 0.060

$$Q^{-1} = 1, R^{-1} = 1^{e}4$$
 (high)

- o rmse x1 : 0.040
- o rmse x2 : 0.007
- o rmse y : 0.056
- $Q^{-1} = 1, R^{-1} = 1^{e}-2$ (low)
 - o rmse x1 : 1.019
 - o rmse x2 : 0.143
 - o rmse y : 1.425

Challenges

- Best way to implement?
 - Weights?
 - Variable w discrete or continuous?
- What about end effect?
 - o Only output state mathers!
 - Similar to mpc
- States in buildings are not equal

 $\dot{x} = \begin{bmatrix} .01 & .34 \\ -.17 & -1.16 \end{bmatrix} x + \begin{bmatrix} .2 \\ 1.68 \end{bmatrix} w$ $y = \begin{bmatrix} 1 \\ -3 \end{bmatrix} x + v_k$

KU LEU

