Automated identification of grey-box control models for monitored buildings with JModelica.org

Roel De Coninck, 3E and KU Leuven
Fredrik Magnusson, Lund University
Johan Åkesson, Lund University
Lieve Helsen, KU Leuven

Optimal control of thermal systems in buildings using Modelica
Freiburg, 23-24 March 2015
From data to models

Data

From:
- monitored buildings
- simulation

Automation of data-driven low-order building modelling
- Data exploration
- Model specification
- Parameter estimation
- Model validation

Models

Use:
- Model Predictive Control (MPC)
- Forecasting
- Large-scale simulations with reduced-order models
- Fault detection and diagnostics (FDD)
Grey-box buildings toolbox

FastBuildings (Modelica library)

Modelica + Optimica

GreyBox

Measurement data

greybox (python module)

JModelica.org

.simulation

.optimization

.compilation
Toolbox functionality and work flow
Data handling

- Loading dataset
- Resampling / interpolation
- Selection of training and validation sets
- Visualization
 - Time series
 - Scatter plots
 - (lagged) cross-correlation
Model selection

- Select a model from FastBuildings library
- Set fix and to-be-estimated parameters (.mop)
Initialization

- Initial value for parameter vector
 - Educated guess
 - From a prior *case*
- Initial simulation
 - Initial trajectories for all variables
 - Automatic scaling
- Visual check (optional)
- Latin hypercube sampling
Latin Hypercube Sampling

Beta distribution based on initial guess, min and max for each parameter
Parameter estimation

minimize $\int_{t_0}^{t_f} e(t)^T \cdot Q \cdot e(t) \, dt$,

with respect to \dot{x}, x, w, u, p,

subject to $F(t, \dot{x}(t), x(t), w(t), u(t), p) = 0$,

$x(t_0) = x_0$,

$\forall t \in [t_0, t_f]$.

- $e(t) = w_{meas}(t) - w_{mod}(t)$
- $F()$ needs to be twice continuously differentiable except towards time
- x_0 included in parameters to be estimated p
- $u(t)$ (disturbances or inputs) can be included in $e(t)$ in order to obtain an 'errors-in-variables' method
Parameter estimation

minimize \(\int_{t_0}^{t_f} e(t)^T \cdot Q \cdot e(t) \, dt \),

with respect to \(\dot{x}, x, w, u, p, \)

subject to \(F(t, \dot{x}(t), x(t), w(t), u(t), p) = 0, \)
\(x(t_0) = x_0, \)
\(\forall t \in [t_0, t_f]. \)

JModelica.org
- Compilation, simulation and optimization
- Direct collocation with automatic differentiation (with CasADi).
- Resulting NLP solved with IPOPT
Collocation method

\[\begin{align*}
\text{min. } & \sum_{i=1}^{n_e} \left(h_i \sum_{k=1}^{n_c} \omega_k e_{i,k}^T Q e_{i,k} \right), \\
\text{w.r.t. } & \dot{x}_{i,k}, x_{i,l}, w_{i,k}, u_{i,k}, p, \\
\text{s.t. } & F(t_{i,k}, \dot{x}_{i,k}, x_{i,k}, w_{i,k}, u_{i,k}, p) = 0, \\
& x_{1,0} = x_0, \\
& x_{n,n_c} = x_{n+1,0}, \quad \forall n \in [1..n_e - 1], \\
& \dot{x}_{i,k} = \frac{1}{h_i} \sum_{j=0}^{n_c} \alpha_{j,k} \cdot x_{i,j}, \\
& \forall i \in [1..n_e], \quad \forall k \in [1..n_c], \quad \forall l \in [0..n_c].
\end{align*} \]
Validation

- Based on post-simulation
- In- and out-of-sample
- Numerical and visual
- Automation:
 - Set of tests (cap ratio, confidence intervals, heatflux, ...)
 - Pass all tests \Rightarrow accepted

back to initial guess, model selection or data handling
Case study twin house
Case study twin house
Model selection
Model selection

![Graph showing RMSE on T_{zon} vs. Number of estimated parameters for different values of n: n=1, n=2, n=3, n=4.](image)

- **RMSE on T_{zon} [K]**
 - 2.5
 - 2.0
 - 1.5
 - 1.0
 - 0.5
 - 0.0

- **Number of estimated parameters**
 - 0
 - 2
 - 4
 - 6
 - 8
 - 10
 - 12
 - 14

- **Symbols**:
 - n=1: Square
 - n=2: Circle
 - n=3: Triangle
 - n=4: Diamond
Validation
Validation

Auto-validation

![Graph showing measured and simulated T_{Zon} temperatures from 24/08/13 to 09/09/13. The graph compares measured (T_{Zon} (measured)) and simulated (T_{Zon} (simulated)) temperatures, with a clear decrease over time.]

- **Start** → **Data handling** → **Model selection** → **Initial guess**
- **Parameter estimation** → **Validation** → **Forecasting/MPC**
Validation

Cross-validation (≡ open loop simulation)
Validation

Selected model (not self-containing for MPC)
Experiment 2

Data
Model selection

- First attempt: two single zone models
- Temperature in other zone as boundary condition
Validation

Zone 1, 95% confidence
Zone 2, 95% confidence

Normalized confidence interval

Start → Data handling → Model selection → Initial guess

Parameter estimation → Validation → Forecasting/MPC
Model selection

- Two-zone model
- Objective = $\text{RMSE}(T_{\text{zon1}}) + \text{RMSE}(T_{\text{zon2}})$
Validation

Auto-validation

- T_{Zon1} (measured)
- T_{Zon1} (simulated)
- T_{Zon2} (measured)
- T_{Zon2} (simulated)
Validation

Cross-validation (= open loop simulation)
Validation

RMSE for both single zone models

<table>
<thead>
<tr>
<th></th>
<th>$RMSE_{auto}$</th>
<th>$RMSE_{cross}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone 1</td>
<td>0.27 K</td>
<td>0.51 K</td>
</tr>
<tr>
<td>Zone 2</td>
<td>0.07 K</td>
<td>0.65 K</td>
</tr>
<tr>
<td>SE</td>
<td>0.34 K</td>
<td>1.16 K</td>
</tr>
</tbody>
</table>

RMSE for two-zone model

<table>
<thead>
<tr>
<th></th>
<th>$RMSE_{auto}$</th>
<th>$RMSE_{cross}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone 1</td>
<td>0.23 K</td>
<td>0.51 K</td>
</tr>
<tr>
<td>Zone 2</td>
<td>0.10 K</td>
<td>1.14 K</td>
</tr>
<tr>
<td>SE</td>
<td>0.33 K</td>
<td>1.65 K</td>
</tr>
</tbody>
</table>
Summary

- Python tool chain for parameter estimation of non-linear Modelica models
- Interactive and scripting/automation
- JModelica.org for compilation, simulation and optimization
- Latin hypercube sampling for search space coverage
- Application to monitored dwelling with good results except if insufficient excitation in identification data
- License: free with GPL-like license for non-commercial use.
Thank you for your attention!

Roel De Coninck
KU Leuven
roel.deconinck@mech.kuleuven.be

3E
roel.deconinck@3e.eu
www.3e.eu

The authors wish to thank the following institutions and projects for their support in realizing this work:
- EU ITEA2 Enerficiency – User Led Energy Efficiency Management (3E)
Backup slides
FastBuildings library
FastBuildings library
Partial_SZ
Identical interface as IDEAS.Interfaces.BaseClasses.Structure
FastBuildings library

Partial_SZ_Zon
FastBuildings library

SZ_ZonWalEmbInt_B
FastBuildings library
A building model