

Agent-based control of a neighborhood

A generic approach by coupling Modelica with Python

Agenda

1. Introduction

- 2. Methodology
 - Model predictive control with a MAS
 - Coupling Modelica & Python
- 3. Results
- 4. Conclusions and discussion

1. Introduction - Duality of research

Building physics

- Modeling
- Simulation
- Rule-based controls

Control

- Optimal control
- Frameworks
- Simple models

KU LEUVEN

1. Introduction - Proof of Concept

Modelica model

- 33 houses
- PV panels
- Risk of over-voltages
- DSM with DHW tanks
- RBC-strategies
 - Clock
 - Voltage

\mapsto Improve performance

KU LEU

1. Introduction

2. Methodology

- Coupling Modelica & Python
- Model predictive control with a MAS
- 3. Results
- 4. Conclusions and discussion

2. Methodology - Modelica & Python

2. Methodology - Modelica & Python

ModelicaRes

Kevin Davies, Hawaii Natural Energy Institute and Georgia Tech Research Corporation Annex 60 Activity 1.2

- Load, analyze and browse data
- Filter and sort groups of results
- Produce various plots and diagrams
- Simulate models

1. Introduction

2. Methodology

- Coupling Modelica & Python
- Model predictive control with a MAS
- 3. Results
- 4. Conclusions and discussion

2. Methodology - Multi-Agent System

- Control of the DHW tanks heated by a HP
- 52-60 °C
- Represented by a **step bidding curve** based on comfort

KU

2. Methodology - Multi-Agent System

- 1. Send bidding curves to the central control
- 1. Find the optimal priority p*
- 1. Send p* to the devices
- 1. Act on p*

2. Methodology - MPC in the BA

Very simple aggregated model for all storage tanks

$$\theta_{i+1} = \theta_i + a \cdot (\theta_i - \theta_{out,i}) + b \cdot Q_i + c \cdot u_i$$

Optimization problem

$$\begin{array}{ll} \min & J(\mathbf{u}) \\ \text{s.t.} & \theta_0 = \frac{\sum_{k=1}^M \theta_{k,dhw}}{M} \\ & P_{max} \ge u_0 \ge P_{min}, \\ & \forall i \in [0, N-1] : \theta_{i+1} = \theta_i + a(\theta_i - \theta_{out,i}) + b \; Q_i + c \; u_i, \\ & \forall i \in [0, N-1] : \theta_{out,i} = \theta_{out,i, \; \text{predicted}}, \\ & \forall i \in [0, N-1] : Q_i = Q_i, \; \text{predicted}. \\ & \forall i \in [1, N] : 333 \ge \theta_i \ge 325, \\ & \forall i \in [1, N-1] : 39600 \ge u_i \ge 0. \end{array}$$

KU LEU

2. Methodology - MPC

KU LEUVEN

Agenda

- 1. Introduction
- 2. Methodology
 - Coupling Modelica & Python
 - Model predictive control with a MAS
- 3. "Results"
- 4. Conclusions and discussion

3. "Results" - Modelica & Python

FMI

- Direct interface to C-code
- Intuïtive for developers
- + Free!
- + Small overhead
- + Tool independent
- Instable
- Speed f(general solver)

Dymosim / Dymola

- Indirect link via .txt files
- Not meant for Co-Sim
- + Very robust
- + Good and fast solvers
- Very expensive
- Large overhead
- Tool dependent

3. "Results" - MPC with a MAS

Comparison with RBC strategies

KU LEUVEN

3. Results - MPC with a MAS

- Better performance
- Optimizes both goals
 - Maximize PV-output
 - Minimize E-demand

Agenda

1. Introduction

- 2. Methodology
 - Coupling Modelica & Python
 - Model predictive control with a MAS
- 3. Results

4. Discussion and conclusion

4. D&C - Modelica Python coupling

- Good research environment
- Modelicares provides similar interface for both fmi and dymosim
- Potential to be totally free with FMI
 - Adjust models to solvers
 - QSS

4. D&C - Proof of concept

- Good performance for this case
 - Simple aggregated model
 - Central control
- MAS handles the distribution of the power well
- Flexible control framework
- Value of the results?
 - Short simulation periods
 - Homogeneous neighborhood

Questions?

