SkySails Tethered Kites for Ship Propulsion and Power Generation: Modeling and System Identification

Michael Erhard,
SkySails GmbH, Hamburg, Germany
Contents

• Introduction SkySails Marine and Power
• Simple Model
• Sensors and Navigation
• Validation of Model and Parameter Estimation
• Control System
• Further Challenges of the Real-World System
KITE PROPULSION
- aux. propulsion system
- up to 2000 kW engine equivalent power
- pilot customer operation since 2008
- autopilot controlled

PERFORMANCE MANAGER
- improved communication ship to shore
- automatic fuel and condition monitoring
- in operation on 35+ ships

SKYSAILS POWER
- small scale model for airborne wind energy
- installed in a trailer
- kites up to 30 m²
- autopilot controlled
SkySails Marine – Towing Kite System

Control Systems

Launch and Recovery System

Airborne Control Pod

Kite sizes up to 320m²

Substitute 1-2 MW of main engine power
System Overview

- Telescopic mast
- Guiding line
- Towing kite
- Control pod
- Towing line
Machine Supported Ground Handling
Production and Installation

Michael Erhard, SkySails GmbH, Talk at IMTEK, University of Freiburg, January 20, 2015
Impressions

See http://youtu.be/ckyHeizCAdk
SKYSAILS POWER Development

Functional prototype:

- Design load: 20 kN
- Kite size: typ. 30 m²
- Installed generator power: 55 kW
- Maximum winch speed: 5 m/s
- Installed tether length: 450 m

http://www.skysails.info/english/power/
SkySails Power

- Pumping Cycle

M. Erhard, H. Strauch,
Flight control of tethered kites in autonomous pumping cycles for airborne wind energy,
SkySails Power

Economic energy generation ➔ Fully automated AWE plants

➔ Reliability of control system crucial
Impressions

(Power Video)
Simple Model
Simple Model

Coordinate System

- Position φ, θ, l
- Orientation ψ

[Diagram showing coordinate system with axes e_x, e_y, e_z, e_{roll}, e_{pitch}, e_{yaw}, and wind direction]
Simple Model

Model Assumptions

1.) Forces huge compared to masses ➞ Neglect Accelerations & Masses

2.) Airflow in Roll Direction

3.) Glide Ratio Condition
Aerodynamics of Tethered Kites

Paraglider (Free flight): $v_{\text{tot}} = 10\text{m/s}$

Tethered Kite:

$$\begin{align*}E &= \frac{v_{\text{hor}}}{v_{\text{vert}}} \\
v_{\text{tot}} &= 1..E \ v_0 \\
F_{\text{tot}} &= 1..E^2 \ F_0 \\
\text{Wind } v_0 = 10\text{m/s with } E=5 \text{ yields } v_{\text{tot}} &= 10..50\text{m/s!} \end{align*}$$
Simple Model

- Equations of motion for φ, $\dot{\varphi}$, and l (3d kite position)

\[
\begin{align*}
\dot{\varphi} & = \frac{v_a}{l} \left(\cos \psi - \frac{\tan \dot{\varphi}}{E} \right) - \frac{l}{l} \tan \varphi \\
\dot{\varphi} & = -\frac{v_a}{l \sin \varphi} \sin \psi \\
l & = v_{\text{winch}} \\
v_a & = v_w E \cos \varphi - i E
\end{align*}
\]

Parameters

- glide ratio
- wind speed
- orientation ψ
- winch speed v_{winch}
Kinematic Equations of Motion

\[\dot{\varphi} = \frac{v_a}{l} \left(\cos \psi - \frac{\tan \vartheta}{E} \right) \]

\[\phi = -\frac{v_a}{l \sin \vartheta} \sin \psi \]
Angle ψ is the central control variable:

- Determines force $\vartheta_0(\psi) = \arctan(E \cos \psi)$

- Keep static zenith position ($\varphi=\text{const}$)

Periodic signal on ψ yields pattern:

$$\dot{\vartheta} = \frac{v_a}{l} \left(\cos \psi - \frac{\tan \vartheta}{E} \right)$$

$$\dot{\varphi} = -\frac{v_a}{l \sin \vartheta} \sin \psi$$
Control of Orientation ψ
Steering

Steering by means of canopy (and force vector) rotation

Aerodynamic force vector
Passive section
Actively steered section
Control pod
Towing rope
F_1
F_2

Turn Rate Law

\[\dot{\psi}_m = g_k \nu_a \delta \]
Sensors and Navigation
Control Pod Sensors

- Line Force Sensor (Strain Gauge)
- Impeller-Anemometer
- Barcode Reader
- Flight Control Computer
- Servo Control
- Energy Buffer
- Cable: Data/Energy
- IMU - 3 Gyro
- 3 Acc.
- Motor

Michael Erhard, SkySails GmbH, Talk at IMTEK, University of Freiburg, January 20, 2015
Sensor Overview

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inertial Measurement Unit (IMU)</td>
<td>$\vec{\omega}_s$</td>
</tr>
<tr>
<td></td>
<td>\vec{a}_s</td>
</tr>
<tr>
<td>Impeller Anemometer</td>
<td>v_a</td>
</tr>
<tr>
<td>Strain Gauge Pod</td>
<td>F</td>
</tr>
<tr>
<td>Barometer</td>
<td>h</td>
</tr>
<tr>
<td>Tow Point</td>
<td>ϕ_s, θ_s</td>
</tr>
<tr>
<td>Ship Anemometer</td>
<td>v_w, ϕ_w</td>
</tr>
<tr>
<td>Ship IMU</td>
<td>L</td>
</tr>
<tr>
<td>Line length</td>
<td></td>
</tr>
</tbody>
</table>

Michael Erhard, SkySails GmbH, Talk at IMTEK, University of Freiburg, January 20, 2015
Inertial Navigation

- Quaternion integration...

- Problem: drift of turn rate sensors
Inertial Navigation

Reference to 'Down'-Direction

Average Accelerations \(\langle \tilde{a}_s \rangle \approx -|g| \, \tilde{e}_z \)
Yaw Angle Estimator

Experimental Results

IMU Angles

Tow Point Angles

Tether

\(\theta_g \)
\(\phi_g \)

- \(e_{\text{yaw}} \)

\(\theta_s \)
\(\phi_r \)

Graph showing IMU angles over time:

- \(\theta_g \)
- \(\theta_s \)
- \(\phi_g \)
- \(\phi_r \)

Angle [rad]

Time [s]

5800 5850 5900 5950 6000
Wind Referencing

Pod IMU

$\bar{\omega}_g$

\bar{d}_s

Yaw Angle Estimator

ψ_g

ϕ_g

θ_g

Calc. ψ

ψ_m

Controller

Reference Block

ϕ_{gr}

Ship Sensors

$\phi_r = \phi_s + (\pi - \phi_w)$

IMU

ϕ_g

Highpass

Lowpass

ϕ_{gr}

Wind-direction

θ_g, θ_s, ϕ_g, ϕ_{gr}, ϕ_r

Angle [rad]

5800 5850 5900 5950 6000

Time [s]
Merging of Algorithms

Complementary Filter

Validation of kinematics
Validation of Kinematics

\[\dot{\psi} = \frac{v_a}{l} \left(\cos \psi - \tan \vartheta \right) \]

\[\dot{\phi} = -\frac{v_a}{l \sin \dot{\psi} \sin \psi} \]
Validation of Kinematics

Flight Direction

\[\gamma = \arctan(-\dot{\phi} \sin \vartheta, \dot{\vartheta}) = \arctan \left(\sin \psi, \cos \psi - \frac{\tan \vartheta}{E} \right) \]
Validation of Turn Rate Law
Turn Rate Law

\[\psi_m = g_k v_a \delta \]

- Turn rate
- Parameter
- Air path speed
- Steering deflection
System Identification

Challenges:

- How to fly open loop and not crash?
- Flight pattern?
- Operational point? (Flight speed, wind window position, …)
System Identification

Test Turn Rate Law?

Bang-Bang-Experiment

\[+\delta_0 \]
\[-\delta_0 \]

\[\psi_m = g_k v_a \delta \]
Extended Turn Rate Law

\[\psi_m = g_k \nu_a \delta + M \frac{\cos \theta_k \sin \psi_k}{\nu_a} \]

2 Fit Parameter

Gravitation

Michael Erhard, SkySails GmbH, Talk at IMTEK, University of Freiburg, January 20, 2015
Online Parameter Estimation

Weighted least-square

\[\hat{\theta}_t = \arg \min_{\theta} \sum_{k=1}^{t} \beta(t, k) [y(k) - \phi^T(k) \theta]^2 \]

\[\hat{\theta}_t = \overline{R}^{-1}(t) f(t) \]

\[\overline{R}(t) = \sum_{k=1}^{t} \beta(t, k) \varphi(k) \varphi^T(k) \]

\[f(t) = \sum_{k=1}^{t} \beta(t, k) \varphi(k) y(k) \]

Example: turn rate law

\[\dot{\psi}_m = g_{\psi} v_a \delta \]

See e.g.: Ljung, System identification

\[
\begin{align*}
\dot{\psi}_m = g_{\psi} v_a \delta \\
y(k) & \quad \hat{\theta}_t & \quad \varphi(k) \\
\text{result}
\end{align*}
\]
Online Parameter Estimation

Recursive algorithm:

\[\hat{\theta}_t = \overline{R}^{-1}(t) f(t) \]

\[\overline{R}(t) = \lambda \overline{R}(t-1) + \varphi(t)\varphi^T(t) \]

\[f(t) = \lambda f(t-1) + \varphi(t)y(t) \]

Applications:
- System monitoring (degrading, damage, …)
- Adaption of controller
Online Parameter Estimation

Michael Erhard, SkySails GmbH, Talk at IMTEK, University of Freiburg, January 20, 2015
Control System
Flight control

Human Control Strategy?

⇒ Use Angle w.r.t. horizon (or wind)
 Orientation determines flight direction

Controlled System (Plant)

Steering Input → Turn Rate Law → Orientation → Kinematic → Flight Direction
Control System

- Cascaded control setup

![Diagram of control system with labeled components: TPi, Trigger event, TP1, TP2, Flight control, Switching of target points, Position, Cycle and winch control, Flight direction, Control orientation, Stabilize yaw axis, Kinematics, Turn rate law, \(\delta \), \(\varphi_m, \dot{\varphi}_m, \dot{\varphi}_m \), \(\psi_m \), \(\psi'_m \), \(\nu_{\text{winch}} \).]
Controller Performance

Turn rate control loop

\[FF_\dot{\psi} \rightarrow \dot{\psi}_m \rightarrow C_\dot{\psi} \rightarrow \delta \rightarrow \dot{\psi} \]

\[\delta_{ff} \]

\[\dot{\psi}_{s} \] to \[\dot{\psi}_{m} \]

\[\text{(FBK \ll FF)} \rightarrow \text{'Indirect' system identification} \]

\[\text{Data file 140722_170704} \]
Limits and challenges
Challenges and limits

Wind is challenging: Profile

How to model the wind field?
→ Profile?
→ Boundary layer?
→ ...
Challenges and limits

Soft Materials

- Modelling Accuracy is limited
- Limited Sensor ‘Accuracy’

Free Flight

Tether Slack

Line Angle Sensors
Free flight

Due to gusts or wave induced motion: temporarily untethered system

Angle w.r.t. Horizon ‘undefined’

Line Angle Sensor

\[\psi_k \]
Thank you for your Attention!

Questions?