

KATHOLIEKE UNIVERSITEIT

Faculteit Ingenieurswetenschappen Departement Werktuigkunde

H04S3A: Master's thesis

Sensitivity analysis of optimal divertor configurations in nuclear fusion reactors

- Introduction
- Objectives
- Methodology
- Forward sensitivity analysis
- Parameter estimation
- General conclusions & future work

Introduction: Nuclear Fusion

www.kentchemistry.com

www.universetoday.com

Magnetic confinement

No magnetic field

With magnetic field

www.iter.rma.ac.be

www.scitechdaily.com

Divertor as exhaust system

www.efda.org/fusion/focus-on/limiters-and-divertors/

Finalizing the ITER divertor design: The key role of SOLPS modeling – Kukushkin,A.S.

Optimal design: uncertainties

- Transport perpendicular to magnetic field
 - mass, momentum and energy transport
 - turbulent processes not well understood
 - modelled as diffusion processes
 - → uncertain anomalous transport coefficients!
- Neutral model
- Boundary conditions
- Large operational window
 - different power or density levels in life time
 - safe operation guaranteed?

Uncertainty quantification

- Forward Uncertainy Quantification
 - output uncertainty based on uncertainty propagation (sensitivity analysis)
- Inverse Uncertainty Quantification
 - parameter estimation/calibration with experiments

Uncertainty quantification: ITER

Finalizing the ITER divertor design: The key role of SOLPS modeling – Kukushkin et al.

Inverse UQ: parameter scan

Simulation of the Edge Plasma in Tokamaks – Coster et al.

- Introduction
- Objectives
- Methodology
- Forward sensitivity analysis
- Parameter estimation
- General conclusions & future work

- Develop efficient **forward** and **inverse** UQ method for uncertainties in optimal divertor design
 - 1) how sensitive and robust is the optimal design?
 - 2) Which input parameter values match the simulation with experimental data?
- Focus on adjoint-gradient-based UQ methods
 - efficient in dealing with large number of uncertainties
 - (cfr. shape-optimization in aerodynamics/divertor design)
- 'Proof of Method': simplified computational domain (MATLAB)
- High-level uncertainties and operational parameters
 - slightly simplified edge plasma model

- Introduction
- Objectives
- Methodology
- Forward sensitivity analysis
- Parameter estimation
- General conclusions & future work

Computational domain

Choice of UQ methods

- Forward: double constrained optimization problem
 - 'best' and 'worst case scenario'
 - output is measure for divertor performance
 - compute max. and min. of output
 - efficient for high-dimensional UQ-problem if adjoint-gradientbased optimizer is applied
- Inverse: non-linear regression
 - find 'best-fit'-values for uncertain parameters
 - adjoint-gradient-based optimizer

Adjoint differentiation

Cost functional

$$I(\mathbf{q}(\phi),\phi) = \int_{S} I_{S}(\mathbf{q}(\phi),\phi) d\sigma.$$

Lagrangian

$$L(\mathbf{q}, \phi, \mathbf{q}^*, \mathbf{q}^*_{\mathbf{S}}) = \underbrace{I(\mathbf{q}, \phi)}_{V} - \int_{V} (\mathbf{q}^*)^T \underbrace{B(\mathbf{q}, \phi)}_{V} d\Omega - \int_{S} (\mathbf{q}^*_{\mathbf{S}})^T \underbrace{B_{S}(\mathbf{q}, \phi)}_{BC} d\sigma.$$
cost function state equations BC

Optimality conditions

 $\left\{ \begin{array}{ll} \nabla_{q^*} L(\mathbf{q}, \phi, \mathbf{q}^*, \mathbf{q}^*_{\mathbf{S}}) &= 0 \quad \text{state equations} \\ \nabla_{q^*_S} L(\mathbf{q}, \phi, \mathbf{q}^*, \mathbf{q}^*_{\mathbf{S}}) &= 0 \quad \text{boundary conditions} \\ \nabla_q L(\mathbf{q}, \phi, \mathbf{q}^*, \mathbf{q}^*_{\mathbf{S}}) &= 0 \quad \text{adjoint equations} \\ \nabla_\phi L(\mathbf{q}, \phi, \mathbf{q}^*, \mathbf{q}^*_{\mathbf{S}}) &\geq 0 \quad \text{design equation} \end{array} \right.$

Adjoint differentiation

When state and adjoint equations satisfied
 → cost function gradient = design equation

$$\frac{dI}{d\phi}\phi' = L_{\phi}\phi' = I_{\phi}\phi' - \int_{V} (\mathbf{q}^{*})^{T} B_{\phi}\phi' d\Omega - \int_{S} (\mathbf{q}_{\mathbf{S}}^{*})^{T} B_{S,\phi}\phi' d\sigma.$$

- Motivation
 - computational cost is roughly independent of #variables!
 - higher accuracy than FD
 - more information of spatial distribution of sensitivity
 - justifies the computational cost of the adjoint state
 (≈ computational cost of forward solution)
 - justifies extra theoretical and implementation work

Optimization algorithms

- BFGS method with line-search (quasi-Newton)
 - every iteration, hessian matrix is updated
 - line-search along step direction \rightarrow approximative minimum
 - Wolfe conditions
 - convergence guaranteed
- One-shot method with steepest-descent method
 - forward, adjoint and optimization problem converge simultaneously
 - choice of relaxation factor crucial for convergence
 - proved to be the fastest in divertor shape optimization

- Introduction
- Objectives
- Methodology
- Forward sensitivity analysis
- Parameter estimation
- General conclusions & future work

Forward UQ: conclusion

- Speed:
 - − BFGS \rightarrow 36 f
 - one-shot → 57 f (due to low relaxation factor)
 → dependent on initial state!
- Accuracy:
 - same for both methods
 - cost functional probably monotonous in design space
- Interpretation:
 - input interval too wide
 - allow spatial variation to include more information
 - insight in diffusion coefficient crucial!

- Introduction
- Objectives
- Methodology
- Forward sensitivity analysis

Parameter estimation

• General conclusions & future work

Inverse UQ: conclusion

- Speed:
 - BFGS → 40 f
 - one-shot \rightarrow 120 f (due to low relaxation factor!)

• Accuracy:

- Introduction
- Objectives
- Methodology
- Forward sensitivity analysis
- Parameter estimation
- General conclusions & future work

General conclusions

- Forward UQ technique
 - computes the output uncertainty interval
 - specific idea of the robustness of a divertor design
 - computational cost of roughly 36 f
 - roughly independent of # uncertainties
- Inverse UQ technique
 - ameliorates simulation predicting capability
 - calibrates most influental parameters very accurately
 - matches simulation and experiment precisely
 - computational cost of roughly 40 f
 - roughly independent of # calibration parameters

22

Future work

- Include spatial variation of uncertain parameters
- Expand edge plasma model
 - add presence of neutrals
 - up to complete edge codes (e.g. B2-Eirene)
- Parameter estimation with real experiments
- 'Robust design'
 - include 'cheap' adjoint sensitivities as a penalty term in cost functional
 - optimizer will favour insensitive minima over lower but sensitive minima

Optimal design: heat spreading

Optimal Shape Design for Divertors - W. Dekeyser et al.

Sensitivity verification

