MC++
|
Classes | |
class | mc::EllImg< T >::Exceptions |
Exceptions of mc::EllImg. More... | |
struct | mc::Ellipsoid::Options |
Ellipsoid options. More... | |
Functions | |
Ellipsoid & | mc::Ellipsoid::operator+= (const CPPL::dcovector &d) |
Given vector \(d\in\mathbb R^n\) and ellipsoid \(\mathcal E\in \mathbb R^n\), returns \((\mathcal E + d)\). | |
Ellipsoid & | mc::Ellipsoid::operator-= (const CPPL::dcovector &d) |
Given vector \(d\in\mathbb R^n\) and ellipsoid \(\mathcal E\in \mathbb R^n\), returns \((\mathcal E - d)\). | |
Ellipsoid & | mc::Ellipsoid::operator= (const Ellipsoid &E) |
Assignment operator. | |
mc::Ellipsoid::Ellipsoid () | |
Default constructor (needed to declare arrays of Ellipsoid class) | |
mc::Ellipsoid::Ellipsoid (const CPPL::dsymatrix &Q, const CPPL::dcovector &c=CPPL::dcovector()) | |
Constructor for ellipsoid of dimension \(n\) with center \(c\) and shape matrix \(Q\). | |
mc::Ellipsoid::Ellipsoid (const unsigned int n, const double *Q, const double *c=0) | |
Constructor for ellipsoid of dimension \(n\) with center \(c\) and shape matrix \(Q\) (lower triangular part stored contiguously and columnwise) | |
mc::Ellipsoid::Ellipsoid (const CPPL::dcovector &r, const CPPL::dcovector &c=CPPL::dcovector()) | |
Constructor for ellipsoid of dimension \(n\) enclosing interval vector of radius \(r\) centered at \(c\). | |
mc::Ellipsoid::Ellipsoid (const Ellipsoid &E) | |
Copy constructor. | |
virtual | mc::Ellipsoid::~Ellipsoid () |
Destructor. | |
Ellipsoid & | mc::Ellipsoid::set (const CPPL::dsymatrix &Q=CPPL::dsymatrix(), const CPPL::dcovector &c=CPPL::dcovector()) |
Define ellipsoid of dimension \(n\) with center \(c\) and shape matrix \(Q\). | |
Ellipsoid & | mc::Ellipsoid::set (const unsigned int n, const double *Q, const double *c=0) |
Define ellipsoid of dimension \(n\) with center \(c\) and shape matrix \(Q\) (lower triangular part stored contiguously and columnwise) | |
Ellipsoid & | mc::Ellipsoid::set (const CPPL::dcovector &r, const CPPL::dcovector &c=CPPL::dcovector()) |
Define ellipsoid of dimension \(n\) enclosing interval vector of radius \(r\) centered at \(c\). | |
template<typename T > | |
Ellipsoid & | mc::Ellipsoid::set (const unsigned n, const T *B) |
Define ellipsoid of dimension \(n\) enclosing interval vector of radius \(r\) centered at \(c\). | |
Ellipsoid & | mc::Ellipsoid::reset () |
Reset ellipsoid. | |
Ellipsoid & | mc::Ellipsoid::extend (const CPPL::drovector &Qi, const double &ci=0.) |
Extend dimension by one, by appending row Qi to shape matrix and entry ci to center. | |
Ellipsoid | mc::Ellipsoid::O () const |
Recenter ellipsoid at the origin by canceling out the centre. | |
unsigned int | mc::Ellipsoid::n () const |
Return dimension of ellipsoid. | |
const CPPL::dcovector & | mc::Ellipsoid::c () const |
Return center of ellipsoid. | |
CPPL::dcovector & | mc::Ellipsoid::c () |
Return center of ellipsoid. | |
double | mc::Ellipsoid::c (unsigned int i) const |
Return center coefficient. | |
const CPPL::dsymatrix & | mc::Ellipsoid::Q () const |
Return shape matrix of ellipsoid. | |
double | mc::Ellipsoid::Q (unsigned int i, unsigned int j) const |
Return shape matrix coefficient. | |
double & | mc::Ellipsoid::Q (unsigned int i, unsigned int j) |
Return/set shape matrix coefficient. | |
double | mc::Ellipsoid::trQ () const |
Return trace of shape matrix. | |
const std::pair < CPPL::dcovector, CPPL::dgematrix > & | mc::Ellipsoid::eigQ () |
Return eigenvalues and eigenvectors of shape matrix. | |
bool | mc::Ellipsoid::psdQ () |
Return square root of shape matrix. | |
const CPPL::dsymatrix & | mc::Ellipsoid::sqrtQ (const bool complete=false) |
Return square root of shape matrix. | |
unsigned int | mc::Ellipsoid::rankQ () |
Return rank of shape matrix. | |
const std::pair < CPPL::dcovector, std::pair < CPPL::dgematrix, CPPL::dgematrix > > & | mc::Ellipsoid::svdQ () |
Return singular value decomposition of shape matrix. | |
const CPPL::dsymatrix & | mc::Ellipsoid::regQ () |
Return pointer to regularized shape matrix. | |
const CPPL::dsymatrix & | mc::Ellipsoid::invQ () |
Return pointer to inverse shape matrix. | |
CPPL::dgematrix | mc::Ellipsoid::align (const CPPL::dcovector &v, const CPPL::dcovector &x) const |
Computes an orthogonal matrix rotating the vector x so that it is parallel to the vector v | |
double | mc::Ellipsoid::l (const unsigned int i) const |
Return lower bound for \(x_i\) for index \(i\in\{0,...,n-1\}\). | |
double | mc::Ellipsoid::u (const unsigned int i) const |
Return upper bound for \(x_i\) for index \(i\in\{0,...,n-1\}\). | |
double | mc::Ellipsoid::r (const unsigned int i) const |
Return maximum radius for \(x_i\) for index \(i\in\{0,...,n-1\}\). | |
CPPL::dssmatrix | mc::EllImg< T >::Q_lift () |
Returns the shape matrix of the lifted Ellipsoid. | |
CPPL::dcovector | mc::EllImg< T >::c_lift () |
Returns the centre of the lifted Ellipsoid. | |
mc::EllImg< T >::EllImg () | |
Default constructor. | |
mc::EllImg< T >::EllImg (const CPPL::dsymatrix &Q, const CPPL::dcovector &c=CPPL::dcovector(), const CPPL::dssmatrix &depmap=CPPL::dssmatrix()) | |
Constructor for ellipsoid with shape matrix \(Q\) and center \(c\). | |
mc::EllImg< T >::EllImg (const unsigned int n, const double *Q, const double *c=0, const CPPL::dssmatrix &depmap=CPPL::dssmatrix()) | |
Constructor for ellipsoid of dimension \(n\) with shape matrix \(Q\) (lower triangular part stored contiguously and columnwise) and center \(c\). | |
mc::EllImg< T >::EllImg (const CPPL::dcovector &r, const CPPL::dcovector &c=CPPL::dcovector(), const CPPL::dssmatrix &depmap=CPPL::dssmatrix()) | |
Constructor for ellipsoid enclosing interval vector of radius \(r\) centered at \(c\). | |
mc::EllImg< T >::EllImg (const EllImg< T > &E) | |
Copy constructor. | |
virtual | mc::EllImg< T >::~EllImg () |
Destructor. | |
EllImg< T > & | mc::EllImg< T >::set (const EllImg< T > &E) |
Set an ellipsoid identical to E | |
EllImg< T > & | mc::EllImg< T >::set (const CPPL::dsymatrix &Q, const CPPL::dcovector &c=CPPL::dcovector(), const CPPL::dssmatrix &depmap=CPPL::dssmatrix()) |
Set an ellipsoid with shape matrix \(Q\) and center \(c\). | |
EllImg< T > & | mc::EllImg< T >::set (const unsigned int n, const double *Q, const double *c=0, const CPPL::dssmatrix &depmap=CPPL::dssmatrix()) |
Set an ellipsoid of dimension \(n\) with shape matrix \(Q\) (lower triangular part stored contiguously and columnwise) and center \(c\). | |
EllImg< T > & | mc::EllImg< T >::set (const CPPL::dcovector &r, const CPPL::dcovector &c=CPPL::dcovector(), const CPPL::dssmatrix &depmap=CPPL::dssmatrix()) |
Set an ellipsoidal enclosing interval vector of radius \(r\) centered at \(c\). | |
EllImg< T > & | mc::EllImg< T >::reset () |
Reset ellipsoidal image to underlying defining ellipsoid. | |
EllImg< T > | mc::EllImg< T >::get (unsigned nvar, EllVar< T > *var) |
Get projection of lifted ellipsoid on variables var | |
std::ostream & | mc::EllImg< T >::output (std::ostream &os=std::cout) |
Output lifted ellipsoid to os | |
mc::EllVar< T >::EllVar () | |
Default constructor. | |
mc::EllVar< T >::EllVar (const EllVar< T > &) | |
Copy constructor. | |
mc::EllVar< T >::EllVar (const double d) | |
Constructor for constants. | |
mc::EllVar< T >::EllVar (const T &) | |
Constructor for intervals. | |
mc::EllVar< T >::EllVar (const double l, const double u) | |
Constructor for intervals. | |
mc::EllVar< T >::EllVar (EllImg< T > &, const unsigned) | |
Constructor for variable in ellipsoidal image. | |
mc::EllVar< T >::EllVar (EllImg< T > &, const unsigned, const T &) | |
Constructor for variable in ellipsoidal image with tailored range. | |
virtual | mc::EllVar< T >::~EllVar () |
Destructor. | |
EllVar< T > & | mc::EllVar< T >::set (EllImg< T > &EI, const unsigned i) |
set variable the ellipsoidal image environment | |
EllVar< T > & | mc::EllVar< T >::set (EllImg< T > &EI, const unsigned i, const T &Irange) |
set variable in ellipsoidal image environment and tailored range | |
T | mc::EllVar< T >::range () const |
get variable range | |
EllImg< T > * | mc::EllVar< T >::image () const |
get pointer to ellipsoidal image | |
long | mc::EllVar< T >::index () const |
get pointer to row index | |