Go to the source code of this file.
Classes | |
class | zhematrix_small< n > |
Samll Complex Double-precision Symmetric Matrix Class. More... | |
Functions | |
comple | det (const zhemat2 &) |
zhemat2 | inv (const zhemat2 &) |
comple | det (const zhemat3 &) |
zhemat3 | inv (const zhemat3 &) |
comple det | ( | const zhemat2 & | A | ) | [inline] |
calculate determinant
Definition at line 3 of file zhematrix_small-specialized.hpp.
{VERBOSE_REPORT;
return A(0,0)*A(1,1) -A(1,0)*A(1,0);
}
zhemat2 inv | ( | const zhemat2 & | A | ) | [inline] |
calculate inverse
Definition at line 10 of file zhematrix_small-specialized.hpp.
References det().
{VERBOSE_REPORT; const comple Adet( det(A) ); zhemat2 Ainv; Ainv(0,0)= A(1,1)/Adet; Ainv(1,0)=-A(1,0)/Adet; Ainv(1,1)= A(0,0)/Adet; return Ainv; }
comple det | ( | const zhemat3 & | A | ) | [inline] |
calculate determinant
Definition at line 25 of file zhematrix_small-specialized.hpp.
{VERBOSE_REPORT;
return
+A(0,0)*A(1,1)*A(2,2) -A(0,0)*A(2,1)*A(2,1)
+A(1,0)*A(2,1)*A(2,0) -A(1,0)*A(1,0)*A(2,2)
+A(2,0)*A(1,0)*A(2,1) -A(2,0)*A(1,1)*A(2,0);
}
zhemat3 inv | ( | const zhemat3 & | A | ) | [inline] |
calculate inverse
Definition at line 35 of file zhematrix_small-specialized.hpp.
References det().
{VERBOSE_REPORT; const comple Adet( det(A) ); zhemat3 Ainv; Ainv(0,0) =(A(1,1)*A(2,2)-A(2,1)*A(2,1))/Adet; Ainv(1,0) =(A(2,1)*A(2,0)-A(1,0)*A(2,2))/Adet; Ainv(1,1) =(A(0,0)*A(2,2)-A(2,0)*A(2,0))/Adet; Ainv(2,0) =(A(1,0)*A(2,1)-A(1,1)*A(2,0))/Adet; Ainv(2,1) =(A(1,0)*A(2,0)-A(0,0)*A(2,1))/Adet; Ainv(2,2) =(A(0,0)*A(1,1)-A(1,0)*A(1,0))/Adet; return Ainv; }