
Numerical Optimal Control, August 2014

Exercise 4: Solving BVPs with Newtons Method

Joel Andersson Joris Gillis Greg Horn Rien Quirynen Moritz Diehl

University of Freiburg – IMTEK, August 5th, 2014

A two-point boundary-value problem

Consider the following two-point boundary-value problem, describing a person throwing a ball
against a target:

ṗx = vx

v̇x = −α vx
√
v2x + v2y

ṗy = vy

v̇y = −α vy
√
v2x + v2y − g0


px(0) = 0
vx(0) = vx,0
py(0) = h
vy(0) = vy,0


px(T) = d
vx(T) = vx,T
py(T) = 0
vy(T) = vy,T

(1)

The ball leaves the hand of the thrower with a velocity (vx,0, vy,0) a distance h = 1.5 m
above the ground. It then follows an unguided trajectory determined by standard gravity
g0 = 9.81 m/s2 and air friction α = 0.02 hitting a target on the ground d = 20 m away after
T = 3 s. The problem is to determine (vx,0, vy,0).

Tasks:

4.1 Use the RK4 integrator scheme from Exercise 3 with 20 steps to simulate the trajectory
of the ball assuming assuming vx,0 = vy,0 = 5 m/s.

4.2 Rewrite the integrator using only CasADi symbolics in order to get an MXFunction that
given v0 := (vx,0, vy,0) returns pT := (px,T , py,T). Do it as follows:

• Start by forming an SXFunction instance which takes one input x and returns one
output ẋ, i.e.

px = SX.sym("px"); vx = SX.sym("vx")

py = SX.sym("py"); vy = SX.sym("vy")

x = vertcat ([px ,vx ,py ,vy])

px_dot = ...

...

x_dot = vertcat ([px_dot ,vx_dot ,py_dot ,vy_dot])

f = SXFunction ([x],[x_dot])

f.init() ← do not forget!

• Then create an MXFunction instance with one input (v0) and one output (pT) that
contains call to f as described in Section 4.3 of the user guide. Your code should
look something like this:

1

v0 = MX.sym("v0" ,2)

px_0 = 0.; vx_0 = v0[0]; py_0 = 1.5.; vy_0 = v0[1]

x = vertcat ([px_0 ,vx_0 ,py_0 ,vy_0])

for k in range(N):

RK4

[k1] = f([x]) ← creates a function call to f!

[k2] = ...

...

x = ...

pT = x[0::2]

F = MXFunction ([v0],[pT])

• Evaluate this function numerically, as described in Section 4.1 of the user guide.
Make sure that the result is consistent with what you obtained in Task 4.1.

4.3 Formulate the two-point boundary-value problem as an NLP as in Exercise 2. Solve with
IPOPT to determine v0.

4.4 Use algorithmic differentiation in CasADi to calculate the Jacobian ∂pT
∂v0

.

Tip: F.jacobian() will generate a new function for calculating the Jacobian.

4.5 Write a full-step Newton method with 10 iterations to solve the root-finding problem

pT = F (v0). (2)

Verify the result by simulating the trajectory as in Task 4.1.

Tip: To solve the lineararized system, use numpy.linalg.solve or the fact that:[
a1,1 a1,2
a2,1 a2,2

]−1

=
1

a1,1 a2,2 − a1,2 a2,1

[
a2,2 −a1,2
−a2,1 a1,1

]
(3)

4.6 Extra: Replace the quadratic friction terms α vx
√
v2x + v2y and α vy

√
v2x + v2y in (1) with

the linear terms α vx and α vy. How does this influence the number of Newton-iterations
needed to solve the problem?

4.7 Extra: Replace the RK4 integrator with CVODES as in Task 3.4 of Exercise 3. Do you
get the same result?

2

