CasADi introduction
Course on Numerical Optimal Control, 4-13 August 2014

Joel Andersson

Freiburg, 4 August 2014

@ CasADi at a glance

9 Symbolic framework of CasADi

9 Exercise: Solving NLPs with CasADi

Joel Andersson CasADi introduction

Outline

@ CasADi at a glance

Joel Andersson CasADi introduction

What is CasADi?

A general-purpsose software framework for quick, yet efficient, implementation of
algorithms for numeric optimization

In particular

Facilitates the solution of optimal control problems (OCPs) using a variety of
different methods

@ OCPs: Wednesday morning

@ Facilitates, not actually solve the OCPs

CasADi

Joel Andersson CasADi introduction Freiburg, 4 August 2014 4 /12

Where CasADi lives

casadi.org — github.com

@ o secnorpescommang © @ Explore Gist Blog Help 5 jg E X P
casadi/ casadi 11 Pull Request @ Unwatch - # Unstar <4 b Fork 4
Cote Network Pull Requests 0 Issues 120 wiki Graphs Settings

Home Pages WikiHistory — Git Access

Home NewPage EditPage Page History

CasADi

Welcome to the CasADi wiki

CasADi is a symbolic framework for auiomatic differentiation and numeric optimization. Using the syntax of computer algebra systems, it
implements automatic differentiation in forward and adjoint modes by means of a hybrid symbolic/numeric approach. The main purpose of the tool

is to be a low-level tool for quick, yet highly efficient implementation of algorithms for numerical optimization. Of particular interest is dynamic
optimization, using either a collocation approach, or a shooting-based approach using embedded ODE/DAE-integrators. In either case, CasADI
relieves the user from the work of efficiently calculating the relevant derivative or ODE/DAE sensitivity information to an arbitrary degree, as
needed by the NLP solver. This together with full-featured Python and Octave front ends, as well as back ends to state-of-the-art codes such as
Sundials (CVODES, IDAS and KINSOL), IPOPT and KNITRO, drastically reduces the effort of implementing the methods compared to a pure
CiC++/Fortran approach.

Every feature of CasADI (with very few exceptions) is available in C++, Python and Octave, with litle to no difference in performance, so the user
has the possibilty of working completely in C++, Python or Octave or mixing the languages. \We recommend new users to try out the Python
version first, since it allows interactivity and is more stable and better documented than the Octave front-end

GasADi is an open-source tool, written in seff-contained G++ code, depending only on the Standard Template Library. It is developed by Joel
Andersson and Joris Gillis at the Optimization in Engineering Center, OPTEC of the K.U. Leuven under supervision of Moritz Diehl. CasADi is
distributed under the LGPL license, meaning the code can be used royalty-free even in commercial applications.

Joel Andersson CasADi introd Freiburg, 4 August 2014 5/12

casadi.org
github.com

More about CasADi
@ Free & open-source (LGPL), also for commercial use
@ Use from C++ or Python
@ Project started in December 2009

Original motivation: Solve OCPs with models from Modelica
Joris Gillis joined spring 2010

Since 2012, a growing number of users

@ Now a mature project at version 2.0, released 25 July 2014

Today's exercise

@ Symbolic framework

@ How to solve nonlinear programs (NLPs)

Joel Andersson CasADi introduction Freiburg, 4 August 2014 6 /12

Outline

© Symbolic framework of CasADi

Joel Andersson CasADi introduction

What you need to know

@ CasADi allows you to symbolic expressions using syntax similar to e.g.
Symbolic Math Toolbox for MATLAB or SymPy.

from casadi import x*

x = SX.sym("x" Variable x with display name "x"

f = sqrt(x*x*2 + 10) f=vx2+10
g = sin(x) g = sin(x)

@ These functions are then used to define functions . ..

R — RxR
F = SXFunction([x],[f,g]) Defines F:
® () = (f.g)
F.init O
@ ...that can e.g. be automatically differentiated using algorithmic
differentiation (AD) = Exercise 4, tomorrow
R - RxRxR
= : af
J F.jacobian () Defines J Gl = (,f,g)
Ox
Freiburg, 4 August 2014 8 / 12

Matrices in CasADi
o CasADi is everything-is-a-matrix (cf. MATLAB)
@ All matrices are sparse

@ Syntax is MATLAB inspired

SX.sym("x",2,3) 2-by-3 symbolic primitive
SX.zeros (4,5) dense 4-by-5 matrix with all zeros
SX.sparse (4,5) sparse (empty) 4-by-5 matrix
SX.eye (4) 4-by-4 identity matrix

Joel Andersson CasADi introduction Freiburg, 4 August 2014 9 /12

Two symbolic types with (almost) the same syntax

® SX: Expression graph with @ MX: Expression graph with
scalar-valued operations

matrix-valued operations
@ Low overhead, for simple functions

@ Larger overhead, but more generic

x = SX.sym("x",2,2) x = MX.sym("x",2,3)

f = sin(x**2 + 10) £ = sin(x**2 + 10)

print f.shape (2,2) print f.shape (2,2)

print x, f print f

X0 X2 sinxg + 10 sinx3 + 10 x. sinx2—+ 10

x1 x3|’ |sinx?+10 sinxZ + 10 ; : 2

1 1 3 (NB: sin and power elementwise)
Why?

By mixing, construct expressions (functions) that are both fast and generic

Joel Andersson CasADi introduction Freiburg, 4 August 2014 10 / 12

Outline

e Exercise: Solving NLPs with CasADi

Joel Andersson CasADi introduction

Parametric NLPs in CasADi
minimize f(x, p)
Xip < X < Xub,

subject to
. gr < glxp) < g

@ x € R" is decision variable
@ p € R™ is fixed (and known) parameter vector

@ Equality constraints: gl(bk) = gﬂ:) for some k.

NLP solvers in CasADi

Are functions: (Xguess, P) V> (Xoptimal; - - -)

Joel Andersson CasADi introduction Freiburg, 4 August 2014 12 /12

	CasADi at a glance
	Symbolic framework of CasADi
	Exercise: Solving NLPs with CasADi

