
Numerical Optimal Control, August 2014

Exercise 1: Quadratic programming

Joel Andersson Joris Gillis Moritz Diehl University of Freiburg – IMTEK

August 4th, 2014

Equilibrium position for a hanging chain

We want to model a chain attached to two supports and hanging in between. Let us discretise it
with N mass points connected by N −1 springs. Each mass i has position (yi, zi), i = 1, . . . , N .
The equilibrium point of the system minimises the potential energy. The potential energy of
each spring is

V i
el =

1

2
Di

(
(yi − yi+1)

2 + (zi − zi+1)
2
)
.

The gravitational potential energy of each mass is

V i
g = mi g0 zi.

The total potential energy is thus given by:

Vchain(y, z) =
1

2

N−1∑
i=1

Di

(
(yi − yi+1)

2 + (zi − zi+1)
2
)

+ g0

N∑
i=1

mi zi, (1)

where y = [y1, · · · , yN ]T and z = [z1, · · · , zN ]T . We wish to solve:

minimize
y,z

Vchain(y, z). (2)

The problem we want to solve is relatively simple; this gives us the possibility to easily
analyse the behaviour of the numerical methods we will use. The problem can be made a bit
more involved by adding inequality constraints, modelling a plane that the chain might touch.

Formulate the problem in the following form, which is how quadratic programs (QPs) are
represented in CasADi:

minimize
x

1

2
xTH x + gT x

subject to xlb ≤ x ≤ xub,

alb ≤ Ax ≤ aub,

where x = [y1, z1, . . . , yN , zN ]T . In this representation, you get an equality constraint by having

upper and lower bound equal, i.e. a
(k)
lb = a

(k)
ub for some k.

1



Tasks:

1.1 Formulate the problem using N = 4, mi = 40/N kg, Di = 70N N/m, g0 = 9.81 m/s2

with the first and last mass point fixed to (−2, 1) and (2, 1), respectively. Before starting
to program, write down the required matrices and vectors on paper (yes, on paper).

1. In a Python script, formulate the above matrices as numpy arrays. The following should
be helpful:

from numpy import *

A = zeros((nA ,nx))

g = zeros(nx)

ubx = inf * ones(nx) # Upper bound on x is infinity

A[0,2] = 1 # set the element at the first row and third column to 1

...

where nx and nA are the number of variables and linear constraints, respectively. Try to
use Python for loops to construct these matrices using N as a parameter.

1.2 Unfortunately, the standard numpy or scipy packages do not ship with a QP solver (like
quadprog in MATLAB). To save you the trouble from installing a proper package for con-
vex programming (for example CVXOPT), we have provided you with a simple function1

on the course website that allows you to solve a QP using qpOASES via CasADi. Its usage
is:

x = qpsolve(H,g,lbx ,ubx ,A,lba ,uba)

1.3 Visualize the solution by plotting (y, z) using matplotlib. This should be helpful:

from matplotlib import pylab as plt

plt.plot(Y,Z,’o-’)

plt.show()

Hint: This might be a good occasion to use a Python slice.

1.3 Introduce ground constraints: zi ≥ 0.5 and zi − 0.1 yi ≥ 0.5. Solve your QP again and
plot the result. Compare the result with the previous one.

1.4 Extra: What would happen if you add instead of the piecewise linear ground constraints,
the nonlinear ground constraints zi ≥ y2i to your problem? The resulting problem is no
longer a QP, but is it convex?

1.5 Extra: What would happen if you add instead the nonlinear ground constraints zi ≥ −y2i
to your problem? Is the problem convex?

1Also available via https://gist.github.com/jaeandersson/d95cbbcdd00e056e8c0f

2

http://cvxopt.org
http://qpoases.org
https://gist.github.com/jaeandersson/d95cbbcdd00e056e8c0f

