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Explicit Euler vs. Runge-Kutta 4

Consider a controlled harmonic oscillator described by:
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dt
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p(t)
v(t)

]
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]
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0
1

]
u(t), t ∈ [0, T ]. (1)

We abbreviate this ODE as ẋ = f(x, u) with x = (p, v)T . We choose the fixed initial value
x(0) = (10, 0)T and T = 10.

Tasks:

The first part of this session, we will just use numpy and matplotlib utilities, not CasADi.
Load both of them with one statement: from pylab import *. Note that matrix mulplication
in numpy is written with dot(A,b), while for CasADi objects it is mul(A,b).

3.1 We are interested in comparing the simulation results for u(t) = 0 that are obtained by
two different integration schemes, namely the (explicit) Euler integrator and a Runge-
Kutta integrator of 4th order. We regard in particular the value p(10), and as the ODE
is explicitly solvable, we know it exactly, which is useful for comparisons. What is the
analytical expression for p(10)? Evaluate it numerically. This may be helpful:

from scipy.linalg import expm

3.2 Write a Python function named f using def f(x,u) that evaluates the right hand side of
the ODE. Then, implement an explicit Euler method with N = 50 integrator steps, i.e.
with a stepsize of ∆t = 10/50 = 0.2. The central line in the Euler code reads

xk+1 = xk + ∆t · f(xk, uk) (2)

Plot your trajectories {(tk, xk)}N+1
1 for uk = 0.

3.2 Now exchange in your Euler simulation code the line that generates the step (2) by the
following five lines:

k1 = f(xk, uk) (3a)

k2 = f(xk +
1

2
∆t · k1, uk) (3b)

k3 = f(xk +
1

2
∆t · k2, uk) (3c)

k4 = f(xk + ∆t · k3, uk) (3d)

xk+1 = xk + ∆t
1

6
(k1 + 2k2 + 2k3 + k4) (3e)

1



This is the classical Runge Kutta method of order four (RK4). Note that each integrator
step is four times as expensive as an Euler step. What is the advantage of this extra
effort? To get an idea, plot your trajectories {(tk, xk)}N+1

1 for the same number N of
integrator steps. Beware: remember to write 1.0/2 to avoid integer division.

3.3 Make both pieces of your integrating code reusable by creating Python functions named
euler and rk4 out them. Both should have arguments x0, T and N and return the state
at the end point. Test your implementation by comparing with the plots.

3.4 To make the comparison of Euler and RK4 quantitative, regard the different approxima-
tions of p(10) that you obtain for different stepsizes, e.g. ∆t = 10−k with k = 0, . . . , 5.
We call these approximations p̃(10; ∆t). Compute the errors |p(10)− p̃(10; ∆t)| and plot
them doubly logarithmic, i.e. using loglog. Use norm to calculate the norm of vectors.
You should see a line for each integrator. Can you explain the different slopes? For easier
interpretation, do grid(True) after plotting.

Integrators in CasADi

CasADi provides solvers for initial-value problems in differential-algebraic equations (DAE) in
the following semi-explicit form:

ẋ = fode(x, z, p, t), x(t0) = x0,
0 = falg(x, z, p, t), initial guess of z(t0) = z0
q̇ = fquad(x, z, p, t), q(t0) = 0,

(4)

where x is the differential state, p is a (known) parameter, z is an algebraic variable and q is a
quadrature state (i.e. a differential state that does not enter in the right-hand-side).

The DAE consists of three parts: (1) differential equation with known initial conditions, (2)
algebraic equations that uniquely determines the algebraic variable z (including an initial guess
of z(t0)) and (3) quadrature equations. If well-posed, the initial-value problem (4) uniquely
determines x, z and q at a time tf.

To allocate an integrator, we construct a CasADi “DAE” function that takes x, z, p and t
as inputs and returns fode, falg and fquad (only x and fode are required), e.g.:

x = SX.sym("x",nx)

f_ode = ...

dae = SXFunction(daeIn(x=x),daeOut(ode=f_ode))

This function is then used to construct an Integrator instance as follows:

integrator = Integrator("cvodes",dae)

where we use CasADi’s interface to the open-source integrator CVODES from the SUNDIALS
suite. From the symbolic expressions, the interface will then generate all information needed to
solve the problem efficiently, including calculating “sensitivities”, as we shall see in Exercise 4.

Integrators are also functions in CasADi that are evaluated to get x(tf), z(tf) and q(tf):

integrator.setInput(x0 ,"x0")

integrator.evaluate () # Solve the initial -value problem

xf = integrator.getOutput("xf")

Tasks:

3.5 Solve the above integration using CVODES and compare the results. Note that the end
time is passed as an “option” to the solver before the “init” step:

integrator.setOption("tf", 10)
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