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Example: oil refining
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Refine raw oil to Light, Middle or
Heavy distillates
Two possibilities:
» A) Lunitrawoiltol1 £,2 M, 2H
» B) Lunitrawoilto4 L, 2 M, 1H

Costs:

» A) 3 money units,
> B) 5 money units

Delivery obligations: 4 £, 5 M, 3 H

How can we minimize our costs and
still deliver what we are expected to?
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Modelling

» Introduce variables x; and x»: represent units of raw oil
processed with procedure A) resp. B)

» Objective: minimize costs (3x1 + 5x2)
» Constraint: positiveness (x1,x2 > 0)
» Constraint: deliver at least 4 £ (Ixg +4x2 > 4)
» Constraint: deliver at least 5 M (2x; + 2x2 > 5)
» Constraint: deliver at least 3 H (2x1 + 1x2 > 3)

min, 3x1 + 5xo

s.t. Ix1 +4x > 4
2x14+2x > 5
2x1+1x > 3

> 0

X1, X2
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What is a Linear Program?

Let for the rest of the talk ¢, x € R", b € R™ A € R™*", Here b, ¢
and A are given, while x is what we are looking for. A Linear
Program (LP) consists of a linear objective function ¢’ x to be
optimized and constraints the solution x has to fulfill.

. n
miny, c¢’'x = Y oh o CiXi = CiX1 + CXo + -+ + CaXn

s.t. a11xX1 + aieXxe + -+ - + A1nXn < b
am1X1 + ampeXo + -+ amnxn < bm1
Amy1X1 + amy2Xo + -+ + amunXn > bmg

Am;1X1 + amy2X2 + -+ amynXn = bm3
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1

a,-TXZb,-}

-
a'x=b; <=
! {a,-Txgb;



Transformations

v

Maximizing f(x) is the same as minimizing —f(x).

v

Multiply > inequalities with —1 to get < inequalities

v

An equality can be split up in two inequalities that both have
to be fulfilled:

1

Ty > b;
alx =b < {a’x—b’}

a,-TXSb,'

v

Inequalities can be transformed to equalities by introducing
additional (slack) variables:
Si > 0

T — .
a,-Txgb,- — { a,-x—&-s, b, }
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Standard form

» Can transform problem to a mathematically equivalent
program. Advantage: easier to handle in theory.

» In practice: exploit structure!

Standard form Geometric interpretation

miny c¢’x . T
s.t. Ax = b MiNx ; X < b
X > 0 s.t. x <




Oil example: different formulations

Geometric interpretation

miny c¢’x

s.t. Ax < b

-1 -4 —4

—2 -2 -5
A=]| —2 —1|,b=|-3],

-1 0 0

0o -1 0

H
c=|5|- X1, xp free




Oil example: different formulations

Geometric interpretation

Standard form

T

0
0

1
-1 —4 —4 Ao (2
—2 =2 -5 5
A=| -2 —1]|,b=]|-3],
[

H
c=1g | X% free

coouw

"
\Y%
—

min, c¢'x
mine ¢Tx s.t. Ax i b
s.t. Ax < b X > 0
4 -1 0 0 4
2 0 -1 0 ,b=15
1 0 0 -1 3




Oil example: Geometric view

» Two-dimensional plane, x; > 0
s (1xq + 4x, > 4)
H (2x1 + 1xp > 3)
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v

v

v

v

Objective function vector ¢

v

"Push” level lines to obtain

ptimal solution:
=2 =3




Oil example: Geometric view

v

Two-dimensional plane, x; > 0
L (I + 4x2 > 4)
H  (2xq+1x>3)
» M (2x; +2x > 5)

v

v

v

Objective function vector ¢

v

"Push” level lines to obtain
ptimal solution:
x1=2 =%




Oil example: Geometric view

v

Two-dimensional plane, x; > 0
L (I + 4x2 > 4)
H  (2xq+1x>3)
» M (2x; +2x > 5)

v

v

v

Objective function vector ¢

v

"Push” level lines to obtain
ptimal solution:
x1=2 =%




Oil example: Geometric view

v

Two-dimensional plane, x; > 0
L (I + 4x2 > 4)
H  (2xq+1x>3)
» M (2x; +2x > 5)

v

v

v

Objective function vector ¢

v

"Push” level lines to obtain
ptimal solution:
x1=2 =%




Oil example: Geometric view

» Two-dimensional plane, x; > 0
L (I + 4x2 > 4)
H  (2q+1x>3)
M (21 +2x > 5)

v

v

v

v

Objective function vector ¢

v

"Push” level lines to obtain
ptimal solution:
X1 = 2, X = %




Oil example: Geometric view

» Two-dimensional plane, x; > 0
L (I + 4x2 > 4)
H  (2q+1x>3)
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Geometric example in 3d

> Feasible region in three
dimensions

» Hyperplanes orthogonal to
vector ¢ show solutions with
the same objective value

» "Pushing” this hyperplane
out of feasible region —-
optimal solution

> Is this also true in higher
dimensions?!?

X,

Hyperplane..__ ‘

Vertex

¥
X




Fundamental Theorem of Linear Programming

Theorem. Let P = {x € R" : Ax = b,x > 0} # () be a polyhedron.
Then either the objective function ¢’ x has no minimum in P or at
least one vertex will take the minimal objective value.
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Summary

» Different formulations for LPs. Most important:

min, c¢’x
st. Ax = b
x >0

» Optimal solution (if existent) is always a vertex
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Duality

> ldea: get a lower bound on the minimum

> Let x be a feasible solution of the problem. Then in each row
Ai.x = b;

» Linear combination gives
> yiAix = yibi
i i
» Choose y so that new coefficients smaller
c'x>yTAx=y"bh

» Choose best bound from all possible ones



Duality theorem (Gale, Kuhn, Tucker 1951)

Primal problem (PP) Dual problem (DP)

: T
min, c’x
x max, by
st. A =b st. ATy < ¢
x > 0 -L. y =

Theorem. PP has a feasible, optimal solution x* if and only if DP
has a feasible, optimal solution y*. Then ¢’ x* = b7 y*.



What to know about duality

v

The dual of the dual is the primal program again

v

Feasible solutions of PP and DP bound one another

v

Applying the primal algorithm to DP is equivalent to so called
“dual simplex algorithm”.

v

Dimensions of variables different: m and n

v

Can solve the problem with “primal” or “dual” simplex, can
have completly different behaviour (# of iterations)
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History of Linear Programming

» George Dantzig invented the simplex algorithm in 1947

» The simplex algorithm has theoretically an exponential (in the
number of variables) runtime-behaviour — it is possible to
construct examples where all vertices are visited (Klee and
Minty)

> In 1979 Leonid Khachiyan proposed an extension to the

nonlinear " Ellipsoid method” of Shor and Nemirovski — the
first method with a polynomial runtime behaviour

» Method performs bad in practice, therefore it is not used any

more, but important for theory and boosted Interior Point
Methods



Interior Point algorithms

Karmarkar, 1984. Idea:

» Walk through the interior of
the feasible domain

> lterate on KKT-conditions
with Newton method

» Gives a linear system in each
step

» Interior Point, Primal and
Dual Simplex each perform
best on approximately one
third of the problem
instances
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Software

» Some commercial codes:

» CPLEX (owned by IBM-ILOG)
> GUROBI (R. Bixby et al.)
» Noncommercial open source codes:
» SoPlex Konrad-Zuse-Zentrum Berlin.
» 1lp_solve by Michel Berkelaar. Can also solve mixed-integer

problems.
» 00QP by Steve Wright. Interior Point solver for LP and QP



