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Example: oil refining

◮ Refine raw oil to Light, Middle or
Heavy distillates

◮ Two possibilities:
◮ A) 1 unit raw oil to 1 L, 2 M, 2 H
◮ B) 1 unit raw oil to 4 L, 2 M, 1 H

◮ Costs:
◮ A) 3 money units,
◮ B) 5 money units

◮ Delivery obligations: 4 L, 5 M, 3 H

◮ How can we minimize our costs and
still deliver what we are expected to?
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Modelling

◮ Introduce variables x1 and x2: represent units of raw oil
processed with procedure A) resp. B)

◮ Objective: minimize costs (3x1 + 5x2)

◮ Constraint: positiveness (x1, x2 ≥ 0)

◮ Constraint: deliver at least 4 L (1x1 + 4x2 ≥ 4)

◮ Constraint: deliver at least 5 M (2x1 + 2x2 ≥ 5)

◮ Constraint: deliver at least 3 H (2x1 + 1x2 ≥ 3)

minx 3x1 + 5x2
s.t. 1x1 + 4x2 ≥ 4

2x1 + 2x2 ≥ 5
2x1 + 1x2 ≥ 3
x1, x2 ≥ 0
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What is a Linear Program?

Let for the rest of the talk c , x ∈ R
n
, b ∈ R

m
,A ∈ R

m×n. Here b, c

and A are given, while x is what we are looking for. A Linear
Program (LP) consists of a linear objective function cT x to be
optimized and constraints the solution x has to fulfill.

minx cT x =
∑n

i=0
cixi = c1x1 + c2x2 + · · ·+ cnxn

s.t. a11x1 + a12x2 + · · ·+ a1nxn ≤ b1
. . .

am11x1 + am12x2 + · · ·+ am1nxn ≤ bm1

. . .

am21x1 + am22x2 + · · ·+ am2nxn ≥ bm2

. . .

am31x1 + am32x2 + · · ·+ am3nxn = bm3
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Transformations

◮ Maximizing f (x) is the same as minimizing −f (x).

◮ Multiply ≥ inequalities with −1 to get ≤ inequalities

◮ An equality can be split up in two inequalities that both have
to be fulfilled:

aTi x = bi ⇐⇒

{

aTi x ≥ bi
aTi x ≤ bi

}

◮ Inequalities can be transformed to equalities by introducing
additional (slack) variables:

aTi x ≤ bi ⇐⇒

{

aTi x + si = bi
si ≥ 0

}
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◮ Can transform problem to a mathematically equivalent
program. Advantage: easier to handle in theory.

◮ In practice: exploit structure!

Standard form

minx cT x

s.t. Ax = b

x ≥ 0

Geometric interpretation

minx cT x

s.t. Ax ≤ b



Oil example: different formulations
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minx cT x
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x ≥ 0
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
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Oil example: Geometric view

◮ Two-dimensional plane, xi ≥ 0

◮ L (1x1 + 4x2 ≥ 4)

◮ H (2x1 + 1x2 ≥ 3)
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◮ Objective function vector c

◮ ”Push” level lines to obtain
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◮ Two-dimensional plane, xi ≥ 0

◮ L (1x1 + 4x2 ≥ 4)

◮ H (2x1 + 1x2 ≥ 3)

◮ M (2x1 + 2x2 ≥ 5)

◮ Objective function vector c

◮ ”Push” level lines to obtain
ptimal solution:
x1 = 2, x2 =

1
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Geometric example in 3d

◮ Feasible region in three
dimensions

◮ Hyperplanes orthogonal to
vector c show solutions with
the same objective value

◮ ”Pushing” this hyperplane
out of feasible region =⇒
optimal solution

◮ Is this also true in higher
dimensions?!?

x2

x

x1

3

Hyperplane

Vertex

c



Fundamental Theorem of Linear Programming

Theorem. Let P = {x ∈ R
n : Ax = b, x ≥ 0} 6= ∅ be a polyhedron.

Then either the objective function cT x has no minimum in P or at
least one vertex will take the minimal objective value.
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Summary

◮ Different formulations for LPs. Most important:

minx cT x

s.t. Ax = b

x ≥ 0

◮ Optimal solution (if existent) is always a vertex
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Duality

◮ Idea: get a lower bound on the minimum

◮ Let x be a feasible solution of the problem. Then in each row

Ai ·x = bi

◮ Linear combination gives

∑

i

yiAi ·x =
∑

i

yibi

◮ Choose y so that new coefficients smaller

cT x ≥ yTAx = yTb

◮ Choose best bound from all possible ones

maxy bT y

s.t. AT y ≤ c



Duality theorem (Gale, Kuhn, Tucker 1951)

Primal problem (PP)

minx cT x

s.t. Ax = b

x ≥ 0

Dual problem (DP)

maxy bT y

s.t. AT y ≤ c

Theorem. PP has a feasible, optimal solution x∗ if and only if DP
has a feasible, optimal solution y∗. Then cT x∗ = bT y∗.



What to know about duality

◮ The dual of the dual is the primal program again

◮ Feasible solutions of PP and DP bound one another

◮ Applying the primal algorithm to DP is equivalent to so called
“dual simplex algorithm”.

◮ Dimensions of variables different: m and n

◮ Can solve the problem with “primal” or “dual” simplex, can
have completly different behaviour (# of iterations)
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History of Linear Programming

◮ George Dantzig invented the simplex algorithm in 1947

◮ The simplex algorithm has theoretically an exponential (in the
number of variables) runtime-behaviour – it is possible to
construct examples where all vertices are visited (Klee and
Minty)

◮ In 1979 Leonid Khachiyan proposed an extension to the
nonlinear ”Ellipsoid method” of Shor and Nemirovski – the
first method with a polynomial runtime behaviour

◮ Method performs bad in practice, therefore it is not used any
more, but important for theory and boosted Interior Point
Methods



Interior Point algorithms

Karmarkar, 1984. Idea:

◮ Walk through the interior of
the feasible domain

◮ Iterate on KKT-conditions
with Newton method

◮ Gives a linear system in each
step

◮ Interior Point, Primal and
Dual Simplex each perform
best on approximately one
third of the problem
instances

x1

x2
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Software

◮ Some commercial codes:
◮ CPLEX (owned by IBM-ILOG)
◮ GUROBI (R. Bixby et al.)

◮ Noncommercial open source codes:
◮ SoPlex Konrad-Zuse-Zentrum Berlin.
◮ lp solve by Michel Berkelaar. Can also solve mixed-integer

problems.
◮ OOQP by Steve Wright. Interior Point solver for LP and QP


