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Linear quadratic control problem

Linear Quadratic Control Problem:

min
x ,u

N−1∑
n=0

(
1

2
[x ′n u′n]

[
Qn S ′n
Sn Rn

] [
xn
un

]
+ [q′n s ′n]

[
xn
un

]
+ ρn

)
+

+
1

2
x ′NPxN + pxN + ρN

s.t. xn+1 = Anxn + Bnun + bn

x0 = x̄0

General formulation:

I quadratic & linear cost function

I affine dynamic

I time variant matrices

Subproblem in IP methods
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Linear quadratic control problem

Linear Quadratic Control Problem:

min
x ,u

N−1∑
n=0

(
1

2
[x ′n u′n]

[
Qn S ′n
Sn Rn

] [
xn
un

]
+ [q′n s ′n]

[
xn
un

]
+ ρn

)
+

+
1

2
x ′NPxN + pxN + ρN

s.t. xn+1 = Anxn + Bnun + bn

x0 = x̄0

Problem size:

I nx states number

I nu inputs number

I N horizon length

Gianluca Frison An N2 and n2x Condensing Method for LQ Control Problem



KKT system

I the LQ control problem is an equality constrained QP

min
θ

1
2θ
′Hθ + h′θ

s.t. Gθ = g

I KKT necessary (and sufficient with mild assumptions)
conditions [

H −G ′
−G 0

] [
θ
π

]
= −

[
h
g

]
I KKT matrix symmetric, sparse and structured, of size

N(2nx + nu)
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Structure of the KKT system

I symmetric and indefinite: can be solved using LDL
factorization in O(N3(2nx + nu)3) flops (naive approach)

R0 B ′0
R1 S1 B ′1

R2 S2 B ′2
S ′1 Q1 −I A′1

S ′2 Q2 −I A′2
Q3 −I

B0 −I
B1 A1 −I

B2 A2 −I





u0
u1
u2
x1
x2
x3
π1
π2
π3


=



−s̃0
−s1
−s2
−q1
−q2
−q3
−b̃0
−b1
−b2
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Solution of the KKT system - Riccati recursion

The Riccati recursion is a factorization of the KKT matrix
rewritten in the form [Rao, Wright and Rawlings (1998)]

R0 B ′0
B0 −I

−I Q1 S ′1 A′1
S1 R1 B ′1
A1 B1 −I

−I Q2 S ′2 A′2
S1 R1 B ′1
A2 B2 −I

−I P





u0
λ1
x1
u1
λ2
x2
u2
λ3
x3


= −



s̃0
b̃0
q1
s1
b1
q2
s2
b2
p


I non-condensed approach exploiting the KKT matrix structure

I cost O(N(nx + nu)3)
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Solution of the KKT system - Condensing

I state elimination
x̄ = Γū + Ā−1b̄

where

Γ =

 I
−A1 I

−A2 I

−1 B0

B1

B2

 =

 B0

A1B0 B1

A2A1B0 A2B1 B2


I only inputs as optimization variables

Hū = f

where
H = R̄ + Γ′S̄ ′ + S̄Γ + Γ′Q̄Γ
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Solution of the KKT system - Condensing

I the large, sparse and structured KKT system is rewritten into
a small and dense system of linear equations

I this system has size Nnu and it is positive definite

I it is traditionally solved using Cholesky factorization and
forward and backward substitution: the cost is O(N3u3u) flops

I is there still structure left in the small, dense condensed
system? yes
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Cholesky factorization

I 2× 2 block version of the algorithm

H =

[
H11 H12

H21 H22

]
= U ′U =

[
U ′11
U ′12 U22

] [
U11 U12

U22

]
=

=

[
U ′11U11 U ′11U12

U ′12U11 U ′22U22 + U ′12U12

]
I We can apply the procedure recursively:

1. factorize H11 to get U11

2. solve U−T11 H12 to get U12

3. correct H22 to get H22 − U ′12U12 = U ′22U22=̇H̃22

4. repeat recursively on H̃22

I Cost:∑n
i=1 1 + (i − 1) + 2i(i−1)

2 =
∑n

i=1 i
2 = n(n+1)(2n+1)

6 ≈ 1
3n

3

I Notice that the factorization starts from the top-left block
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Structure of the condensed matrix

I for the moment let us assume that Sn = 0 (only for clarity of
presentation)

I for N = 3, the condensed matrix looks already pretty
complicated[

R0 + B′
0Q1B0 + B′

0A
′
1Q2A1B0 + B′

0A
′
1A

′
2P3A2A1B0 B′

0A
′
1Q2B1 + B′

0A
′
1A

′
2P3A2B1 B′

0A
′
1A

′
2P3B2

B′
1Q2A1B0 + B′

1A
′
2P3A2A1B0 R1 + B′

1Q2B1 + B′
1A

′
2P3A2B1 B′

1A
′
2P3B2

B′
2P3A2A1B0 B′

2P3A2B1 R2 + B′
2P3B2

]
I complex structure at the top-left corner

I simple structure at the bottom-right corner

I what if we permute the matrix?
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Factorization of the permuted condensed matrix

I Let us reverse all columns and rows, and apply Cholesky
factorization (for N = 2)[

R1 + B ′1P2B1 B ′1P2A1B0

B ′0A1P3B1 R0 + B ′0Q1B0 + B ′0A
′
1P2A1B0

]
I factorize R1 + B ′1P2B1 = U ′11U11

I solve U12 = U−T11 (B ′1P2A1B0)

I correct R0 + B ′0Q1B0 + B ′0A
′
1P2A1B0 − U ′12U12=̇R0 + B ′0P1B0

where P1 = Q1 + A′1P2A1 − A′1P2B1(R1 + B ′1P2B1)−1B ′1P2A1

I that is the classical Riccati recusion
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Factorization of the permuted condensed matrix

[D. Axehill, M. Morari (2012)]

I Riccati recursion can be used to compute the factorization of
the dense Hessian matrix

I the factorized system is solved using standard backward and
forward substitutions

I Riccati recursion for the computation of the matrices Pn: cost
O(N(nx + nu)3)

I construction of the Cholesky factor of H: O(N2)

I no O(N3) operations, but the overall algorithm is always
slower that Riccati recursion

I can we get an algorithm with better complexity? yes
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Structure exposed

For N = 3, we can write the permuted matrix as[
R2 + B′

2P3B2 (B′
2P3A2)B1 (B′

2P3A2)A1B0
∗ R1 + B′

1Q2B1 + B′
1A

′
2P3A2B1 (B′

1Q2A1 + B′
1A

′
2P3A2A1)B0

∗ ∗ R0 + B′
0Q1B0 + B′

0A
′
1Q2A1B0 + B′

0A
′
1A

′
2P3A2A1B0

]
=

=

[
D2 M2B1 M2A1B0

∗ D1 M1B0

∗ ∗ D0

]

I dense matrix, but now structure is exposed

I is Cholesky factorization preserving this structure? yes
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Structure exposed - factorization - 1st row

I factorization U2 M2B1 M2A1B0

∗ D1 M1B0

∗ ∗ D0


I solution (key idea: update of one single matrix ⇒ no O(N2) terms))U2 U−T

2 M2B1 U−T
2 M2A1B0

∗ D1 M1B0

∗ ∗ D0


I correction (key idea: the correction the block H22 is equivalent to the

correction of the matrix Q2 ⇒ no O(N3) terms)U2 L2B1 L2A1B0

∗ D̃1 M̃1B0

∗ ∗ D̃0


I D̃1 = D1 − B ′1L

′
2L2B1 = R1 + B ′1(Q2 − L′2L2)B1 + B ′1A

′
2P3A2B1

I M̃1 = M1 − B ′1L
′
2L2A1 = B ′1(Q2 − L′2L2)A1 + B ′1A

′
2P3A2A1

I D̃0 = D0 − B ′0A
′
1L
′
2L2A1B0 =

R0 + B ′0Q1B0 + B ′0A
′
1(Q2 − L′2L2)A1B0 + B ′0A

′
1A
′
2P3A2A1B0
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Structure exposed - factorization - 2nd row

I factorization U2 M2B1 M2A1B0

∗ U1 M1B0

∗ ∗ D0


I solution U2 L2B1 L2A1B0

∗ U1 U−T1 M̃1B0

∗ ∗ D̃0


I correction U2 L2B1 L2A1B0

∗ U1 L1B0

∗ ∗ D̄0


I D̄0 = D̃0 − B ′0L

′
1L1B0 = R0 + B ′0(Q1 − L′1L1)B0 +

B ′0A
′
1(Q2 − L′2L2)A1B0 + B ′0A

′
1A
′
2P3A2A1B0
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Structure exposed - factorization - 3rd row

I factorization only

Û =

U2 L2B1 L2A1B0

U1 L1B0

U0


I key idea: the matrix Û is build and factorized on-the-fly, once

the corrected Qn matrices are computed

I can this structure be exploited also to solve the factorized
system

Û ′Û û = −f̂

using forward and backward substitution? yes
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Structure exposed - system solution

I forward substitutionv2v1
v0

 = −

U−T2 (g2)

U−T1 (g1 + B ′1L
′
2v2)

U−T0 (g0 + B ′0A
′
1L
′
2v2 + B ′0L

′
1y1)


I backward substitutionu2u1

u0

 =

U−12 (v2 − L2B1u1 − L2A1B0)

U−11 (v1 − L1B0u0)

U−10 (v0)


I key idea: we do not even need to explicitly build Û , we just

need to compute the matrices Un and Ln (and thus in turn Dn

and Mn)
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Structure exposed - cost

I the cost of the factorization is then linear in N

1
3Nn

3
u + (N − 1)nxn

2
u + (N − 1)n2xnu

plus the cost to build Dn and Mn

I two approaches to build Dn and Mn

1. avoid O(N2) operations, at the cost of higher complexity in nx
2. avoid O(n3x) operations, at the cost of higher complexity in N

I the most efficient approach depends on the problem size
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Build the matrix - 1st approach

Riccati-like solver: use a recursion to keep a constant number of
operations per stage

Dn = Rn + (B ′nPn+1)Bn

Mn = Sn + (B ′nPn+1)An

where

Pn+1 = Q∗n+1 + A′nPn+1An = (Qn+1 − L′nLn) + A′nPn+1An

I the computation of A′nPn+1An is cubic in nx
I total cost (build+factorize): N(73n

3
x + 4n2xnu + 2nxn

2
u + 1

3n
3
u)
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Build the matrix - 2nd approach

Pure condensing solver: always multiply matrices of size nx × nx to
matrices of size nx × nu

D̂ = R̂ + B̂ ′ · diag
(
Â−T (Q̂∗ · Γ̂)

)
M̂ = Ŝ +

(
diag

(
Â−T (Q̂∗ · Γ̂)

))′ · Â
where

Â =

0 A2

0 A1

0


I in an IP method, Γ̂ = Â−1 · B̂ can be computed off-line

I Q̂∗ · Γ̂ and Â−T (Q̂∗Γ̂) cost N2n2xnu
I total cost (build+factorize): 2N2n2xnu + 3Nnxn

2
u + 1

3Nn
3
u
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Numerical results # 1

I nx varying

I Riccati O(n3x) vs
Condensing O(n2x)

I OpenBLAS
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Numerical results # 1

I nx varying
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Condensing O(n2x)
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HPMPC
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Numerical results # 2

I N varying

I Riccati O(N) vs
Condensing O(N2)

I OpenBLAS
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Numerical results # 2

I N varying

I Riccati O(N) vs
Condensing O(N2)

I OpenBLAS vs
HPMPC
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Conclusion

I structure-exploiting factorization of the condensed Hessian

I factorization cost is linear in N, plus the cost to build Dn and Mn

I 1st approach: Riccati-like solver, cost linear in N and cubic in nx

I 2nd approach: pure condensing solver, cost quadratic in N and
quadratic in nx

Questions?
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