The QP Solvers in the ACADO Code Generation Tool

Milan Vukov Moritz Diehl

Wednesday 19 March 14

The Context

- Nonlinear Model Predictive Control (NMPC)
- Nonlinear Moving Horizon Estimation (NMHE)

$$\min_{u,s} \|s_P - s_{ref}\|_{Q_P}^2 + \sum_{k=0}^{P-1} \|s_k - s_{ref}\|_Q^2 + \|u_k - u_{ref}\|_R^2 \rightarrow \text{ deviation from the reference}$$
s.t. $s_{k+1} = f(s_k, u_k), \quad k = 0, \dots, P-1, \quad \rightarrow \text{ model of the system evolution}$
 $h(s_k, u_k) \leq 0, \quad k = 0, \dots, P-1, \quad \rightarrow \text{ constraints}$
 $s_0 = \hat{x}_0 \quad \rightarrow \text{ current state of the system}$

 $\min_{x_0,\ldots,x_N} u_0,\ldots,u_{N-1}$

$$\sum_{k=0}^{N-1} ||h(x_k, u_k) - \tilde{y}_k||_{S_k}^2 + ||h_N(x_N) - \tilde{y}_N||_{S_N}^2$$

s.t.

$$\begin{aligned} x_0 &= \hat{x}_0 \\ x_{k+1} &= F(x_k, u_k, z_k) & \text{for } k = 0, \dots, N-1 \\ x_k^{\text{lo}} &\leq x_k \leq x_k^{\text{up}} & \text{for } k = 0, \dots, N \\ u_k^{\text{lo}} &\leq u_k \leq u_k^{\text{up}} & \text{for } k = 0, \dots, N-1 \\ r_k^{\text{lo}} &\leq r_k(x_k, u_k) \leq r_k^{\text{up}} & \text{for } k = 0, \dots, N-1 \\ r_N^{\text{lo}} &\leq r_N(x_n) \leq r_N^{\text{up}} \end{aligned}$$

 $\min_{x_0,\ldots,x_N} u_0,\ldots,u_{N-1}$

N-

 $\overline{k} =$

$$\sum_{k=0}^{-1} ||h(x_k, u_k) - \tilde{y}_k||_{S_k}^2 + ||h_N(x_N) - \tilde{y}_N||_{S_N}^2$$

s.t.

$$\begin{aligned} x_0 &= \hat{x}_0 \\ x_{k+1} &= F(x_k, u_k, z_k) & \text{for } k = 0, \dots, N-1 \\ x_k^{\text{lo}} &\leq x_k \leq x_k^{\text{up}} & \text{for } k = 0, \dots, N \\ u_k^{\text{lo}} &\leq u_k \leq u_k^{\text{up}} & \text{for } k = 0, \dots, N-1 \\ r_k^{\text{lo}} &\leq r_k(x_k, u_k) \leq r_k^{\text{up}} & \text{for } k = 0, \dots, N-1 \\ r_N^{\text{lo}} &\leq r_N(x_n) \leq r_N^{\text{up}} \end{aligned}$$

 $\min_{x_0,\ldots,x_N} u_0,\ldots,u_{N-1}$

s.t.

$$\sum_{k=0}^{N-1} ||h(x_k, u_k) - \tilde{y}_k||_{S_k}^2 + ||h_N(x_N) - \tilde{y}_N||_{S_N}^2$$

$$\begin{aligned} x_0 &= \hat{x}_0 \\ x_{k+1} &= F(x_k, u_k, z_k) & \text{for } k = 0, \dots, N-1 \\ x_k^{\text{lo}} &\leq x_k \leq x_k^{\text{up}} & \text{for } k = 0, \dots, N \\ u_k^{\text{lo}} &\leq u_k \leq u_k^{\text{up}} & \text{for } k = 0, \dots, N-1 \\ r_k^{\text{lo}} &\leq r_k(x_k, u_k) \leq r_k^{\text{up}} & \text{for } k = 0, \dots, N-1 \\ r_N^{\text{lo}} &\leq r_N(x_n) \leq r_N^{\text{up}} \end{aligned}$$

 $\min_{x_0,\ldots,x_N} u_0,\ldots,u_{N-1}$

$$\sum_{k=0}^{N-1} ||h(x_k, u_k) - \tilde{y}_k||_{S_k}^2 + ||h_N(x_N) - \tilde{y}_N||_{S_N}^2$$

s.t.

$$\begin{aligned} x_0 &= \hat{x}_0 \\ x_{k+1} &= F(x_k, u_k, z_k) & \text{for } k = 0, \dots, N-1 \\ x_k^{\text{lo}} &\leq x_k \leq x_k^{\text{up}} & \text{for } k = 0, \dots, N \\ u_k^{\text{lo}} &\leq u_k \leq u_k^{\text{up}} & \text{for } k = 0, \dots, N-1 \\ r_k^{\text{lo}} &\leq r_k(x_k, u_k) \leq r_k^{\text{up}} & \text{for } k = 0, \dots, N-1 \\ r_N^{\text{lo}} &\leq r_N(x_n) \leq r_N^{\text{up}} \end{aligned}$$

min x_0,\ldots,x_N u_0,\ldots,u_{N-1}

s.t.

k

$$\sum_{k=0}^{N-1} ||h(x_k, u_k) - \tilde{y}_k||_{S_k}^2 + ||h_N(x_N) - \tilde{y}_N||_{S_N}^2$$

$$\begin{aligned} x_0 &= \hat{x}_0 \\ x_{k+1} &= F(x_k, u_k, z_k) & \text{for } k = 0, \dots, N-1 \\ x_k^{\text{lo}} &\leq x_k \leq x_k^{\text{up}} & \text{for } k = 0, \dots, N \\ u_k^{\text{lo}} &\leq u_k \leq u_k^{\text{up}} & \text{for } k = 0, \dots, N-1 \\ r_k^{\text{lo}} &\leq r_k(x_k, u_k) \leq r_k^{\text{up}} & \text{for } k = 0, \dots, N-1 \\ r_N^{\text{lo}} &\leq r_N(x_n) \leq r_N^{\text{up}} \end{aligned}$$

 $\min_{x_0,\ldots,x_N} u_0,\ldots,u_{N-1}$

s.t.

$$\sum_{k=0}^{N-1} ||h(x_k, u_k) - \tilde{y}_k||_{S_k}^2 + ||h_N(x_N) - \tilde{y}_N||_{S_N}^2$$

$$\begin{aligned} x_0 &= \hat{x}_0 \\ x_{k+1} &= F(x_k, u_k, z_k) & \text{for } k = 0, \dots, N-1 \\ x_k^{\text{lo}} &\leq x_k \leq x_k^{\text{up}} & \text{for } k = 0, \dots, N \\ u_k^{\text{lo}} &\leq u_k \leq u_k^{\text{up}} & \text{for } k = 0, \dots, N-1 \\ r_k^{\text{lo}} &\leq r_k(x_k, u_k) \leq r_k^{\text{up}} & \text{for } k = 0, \dots, N-1 \\ r_N^{\text{lo}} &\leq r_N(x_n) \leq r_N^{\text{up}} \end{aligned}$$

Solution methods Real-time Iterations [Diehl 2002]

- Problem discretization single/multiple shooting [Bock 1984]
- Least squares objective employ Gauss-Newton method
- Perform only one SQP iteration per sampling time
- Optionally condense a sparse QP
- Division into preparation and feedback phase

$$\min_{\substack{x_0, \dots, x_N \\ u_0, \dots, u_{N-1}}} ||x_0 - x_{AC}||_{S_{AC}}^2 + \sum_{k=0}^{N-1} ||h(x_k, u_k) - \tilde{y}_k||_{S_k}^2$$

$$\begin{aligned} x_0 &= \hat{x}_0 \\ x_{k+1} &= F(x_k, u_k, z_k) & \text{for } k = 0, \dots, N-1 \\ x_k^{\text{lo}} &\leq x_k \leq x_k^{\text{up}} & \text{for } k = 0, \dots, N \\ u_k^{\text{lo}} &\leq u_k \leq u_k^{\text{up}} & \text{for } k = 0, \dots, N-1 \\ r_k^{\text{lo}} &\leq r_k(x_k, u_k) \leq r_k^{\text{up}} & \text{for } k = 0, \dots, N-1 \\ r_N^{\text{lo}} &\leq r_N(x_n) \leq r_N^{\text{up}} \end{aligned}$$

s.t.

RTI Scheme IOI(I)

RTI Scheme 101(2)

RTI Scheme 101(3)

RTI Scheme 101(5)

Classical Condensing

$$\begin{array}{ll} \underset{x_{0},u_{0},\ldots,x_{N}}{\text{minimize}} & \frac{1}{2}\sum_{k=0}^{N-1} \begin{bmatrix} x_{k} \\ u_{k} \end{bmatrix}^{T} \begin{bmatrix} Q_{k} & S_{k} \\ S_{k}^{T} & R_{k} \end{bmatrix} \begin{bmatrix} x_{k} \\ u_{k} \end{bmatrix}^{T} \begin{bmatrix} g_{k}^{*} \\ g_{k}^{*} \end{bmatrix}^{T} \\ & + \frac{1}{2}x_{N}^{T}Q_{e}x_{N} + x_{N}^{T}g_{e}^{*} \\ & + \frac{1}{2}x_{N}^{T}Q_{e}x_{N} + x_{N}^{T}g_{e}^{*} \\ & x_{k+1} = A_{k}x_{k} + B_{k}u_{k} + c_{k}, \quad \text{for} \quad k = 0, \ldots, N-1 \\ & x_{k}^{\text{lo}} \leq x_{k} \leq x_{k}^{\text{up}}, \qquad \text{for} \quad k = 0, \ldots, N, \\ & \text{subject to} \quad u_{k}^{\text{lo}} \leq u_{k} \leq u_{k}^{\text{up}}, \qquad \text{for} \quad k = 0, \ldots, N-1, \\ & b_{k}^{\text{lo}} \leq C_{k}x_{k} + D_{k}u_{k} \leq b_{k}^{\text{up}}, \qquad \text{for} \quad k = 0, \ldots, N-1, \\ & b_{e}^{\text{lo}} \leq C_{e}x_{N} \leq b_{e}^{\text{up}}, \end{array} \right)$$

... and employ dense linear algebra QP solver, e.g. qpOASES

Wednesday 19 March 14

Exploit the structure! [Leineweber I 999]

$$C = \begin{bmatrix} C_0 \\ C_1 \\ \dots \\ C_{N-1} \end{bmatrix}, \quad E = \begin{bmatrix} E_{0,0} \\ E_{0,1} & E_{1,1} \\ \vdots & \vdots & \ddots \\ E_{0,N-1} & \cdots & E_{N-1,N-1} \end{bmatrix}$$

Then $E'\overline{Q}E$ can be computed more efficiently

$$\frac{1}{2}N^3 \longrightarrow \frac{1}{6}N(N+1)(N+2)$$

Can we do better?

... From another point of view ...

$A \, x = B \, u + c \Leftrightarrow$

... From another point of view ...

$A \, x = B \, u + c \Leftrightarrow$

... From another point of view ...

$A \, x = B \, u + c \Leftrightarrow$

N² complexity

* Frison2012, Andersson2013, Frison2013

Wednesday 19 March 14

(N = 3)

E: sensitivity propagation matrixH: condensed Hessian matrix

write H block

Wednesday 19 March 14

read E block

read E block

read E block

write H block

write H block

read E block

write H block

read E block

write H block

Wednesday 19 March 14

write E block

read E block

write H block

Each column (row) of H can be built independently

Even better condensing?

An interface to a QP solver

An interface to a QP solver

N² factorization*

- Exchange $O(N^3 n_u^3)$ with $O(N^2 n_x^2 n_u)$ complexity for factorization of the Hessian
- Preliminary benchmarks show that it is
 not so smart to form both H and R
 for n_x >> n_u

* Frison2013

Wednesday 19 March 14

And what about long horizons?

Wednesday 19 March 14

FORCES http://forces.ethz.ch

Implements primal-dual IP method

Auto-generated C-code

* Domahidi2012

A Dual Newton Strategy*

C-code Software Implementation **qpDUNES**

$$\min_{z} \sum_{k=0}^{N} \left(\frac{1}{2} z_k^{\mathrm{T}} H_k z_k + g_k^{\mathrm{T}} z_k \right)$$

s.t.
$$E_{k+1}z_{k+1} = C_k z_k + c_k$$
 $\forall k = 0, \dots, N-1$
 $\underline{d}_k \leq D_k z_k \leq \overline{d}_k$ $\forall k = 0, \dots, N.$

* Ferreau2012, Frasch2014

$$\mathcal{L}(z,\lambda) = \sum_{k=0}^{N} \left(\frac{1}{2} z_k^{\mathrm{T}} H_k z_k + g_k^{\mathrm{T}} z_k + \begin{bmatrix} \lambda_k \\ \lambda_{k+1} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} -E_k \\ C_k \end{bmatrix} z_k + \lambda_{k+1}^{\mathrm{T}} c_k \right)$$
$$=: \sum_{k=0}^{N} L_k(z_k, \lambda_k, \lambda_{k+1}),$$

$$\mathcal{L}(z,\lambda) = \sum_{k=0}^{N} \left(\frac{1}{2} z_{k}^{\mathrm{T}} H_{k} z_{k} + g_{k}^{\mathrm{T}} z_{k} + \begin{bmatrix} \lambda_{k} \\ \lambda_{k+1} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} -E_{k} \\ C_{k} \end{bmatrix} z_{k} + \lambda_{k+1}^{\mathrm{T}} c_{k} \right)$$
$$=: \sum_{k=0}^{N} L_{k}(z_{k},\lambda_{k},\lambda_{k+1}),$$

$$\max_{\lambda} \quad \min_{z} \quad \sum_{k=0}^{N} L_{k}(z_{k}, \lambda_{k}, \lambda_{k+1})$$

s.t.
$$\underline{d}_{k} \leq D_{k} z_{k} \leq \overline{d}_{k} \quad \forall k = 0, \dots, N$$

ACADO toolkit [Houska 2009] www.acadotoolkit.org

- Open source package (LGPL)
- Depends only on the standard C++ library
- Multi-platform: Linux, OS X, Windows
- MATLAB & Simulink Interfaces

- Optimal control of dynamic systems
- State and parameter estimation
- Feedback control based on MPC/MHE
- Fast implementations for RT execution: ACADO Code

ACADO Code Generation Tool *

- Optimize the number of evaluations of the righthand-side of ODE/DAE and its derivatives.
- Use tailored fixed-step Runge-Kutta integrators
- Avoid dynamic memory allocation
- Minimize branching in the exported code
- Export optimized linear algebra routines
- Interfaces to MATLAB & Simulink
- OpenMP support for multiple shooting

* Houska2011, Ferreau2012, Quirynen2012, Vukov2012, Quirynen2013, Vukov2013

Wednesday 19 March 14

Results

 Benchmark problem is a chain-mass problem [Wirsching 2006]

Results

 Benchmark problem is a chain-mass problem [Wirsching 2006]

M masses

3(2M + I) states

3 controls

M = I, N = 5... 50; $n_x = 9$, $n_u = 3$

M = I, N = 5... 50; $n_x = 9$, $n_u = 3$

Improvements: x6 for condensing & x3 for FORCES

 $M = 3, N = 5...50; n_x = 21, n_u = 3$

N³ Condensed vs FORCES NMPC $n_x = 21, n_u = 3$

N³ Condensed vs N² Cond. NMPC $n_x = 21, n_u = 3$

 N^2 vs N^3 condensing $n_x = 57, n_u = 3$

Real-world apps

The Overhead Crane

First validation of code-generated NMPC [Vukov2012]

Estimation & Control for tethered kites

MHE and NMPC implementation on an experimental test set-up for launch/recovery of an airborne wind energy (AWE) system, located at KU Leuven.

Estimation & Control for tether kites

- Nonlinear dynamics: **27** states and **4** controls
- Nonlinear measurement functions (for camera subsystem and IMU)
- Multi-rate sensor fusion:
 - Camera measurements @ 12.5 Hz (+ images are delayed)
 - IMU measurements @ 500 Hz encoder measurements @ 10 Hz
 - Encoder measurements @ I kHz (snapshotting)
- MHE & NMPC update frequency: 25 Hz
- Maximum execution time for MHE: **I I ms (N = 20)**
- Maximum execution time for NMPC: < 25 ms (N =40)
State estimation for induction motors* KUL & ETHZ

- Dynamic system properties:
 - 5 states, 2 controls
 - 6 estimation intervals
 - employing arrival cost
 - sampling freq.: **1.5 kHz**
- Execution times:
 - one RTI on a 3 GHz Intel CPU:
 30 µs (double precision)
 - one RTI on a 1 GHz TI low power DSP: **270** µs (single precision)

* Frick2012

Even more applications

• KUL:

Friction estimation for nano-positioning xy-tables

- KUL, cooperation with CNH and New Holland: MHE and NMPC for agricultural machines
- KUL & Flanders' Mechatronics Technology Centre (FMTC): Control of mobile robots
- University of Linz, Austria: MHE and NMPC for diesel engine air system control
- ABB, Switzerland:

Anti-surge control for centrifugal compressors
 MPC for torque control in power el. applications

Acknowledgements

EMBOCON HIGHWIND

Hans Joachim Ferreau, Boris Houska, Rien Quirynen, Joel Andersson, Janick Frasch, Alex Domahidi, Gianluca Frison

Thank you very much for your attention!

Questions?